1. Trang chủ
  2. » Tất cả

Đề ôn thpt môn toán (74)

6 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 114,92 KB

Nội dung

Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Giá trị của giới hạn lim 2 − n n + 1 bằng A 0 B 2 C 1 D −1 Câu 2 Dãy số nào sau đây có giới hạn là 0? A ( 5[.]

Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi 2−n Câu Giá trị giới hạn lim n+1 A B Câu !Dãy số sau có giới !hạn 0? n n 5 B − A 3 √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − 1 A − B C D −1 !n C !n D e C D C D +∞ C D C D C D Câu Giá trị lim(2x2 − 3x + 1) x→1 A Câu Tính lim A +∞ B 2n − + 3n + B −∞ 2n2 Câu Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B 2n + Câu Tìm giới hạn lim n+1 A B Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ A lim [ f (x) + g(x)] = a + b x→+∞ B lim [ f (x)g(x)] = ab x→+∞ f (x) a D lim = x→+∞ g(x) b x→+∞ C lim [ f (x) − g(x)] = a − b x→+∞ x−3 bằng? x→3 x + A B −∞ x+2 Câu 10 Tính lim bằng? x→2 x A B Câu [1] Tính lim C +∞ D C D q Câu 11 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 4] B m ∈ [−1; 0] C m ∈ [0; 2] D m ∈ [0; 1] Câu 12 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m < B m > C m ≤ D m ≥ √ Câu 13 [12215d] Tìm m để phương trình x+ A < m ≤ B ≤ m ≤ 4 1−x2 √ − 4.2 x+ 1−x2 C m ≥ − 3m + = có nghiệm D ≤ m ≤ Câu 14 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 13 B 2020 C log2 2020 D log2 13 Trang 1/5 Mã đề log(mx) = có nghiệm thực log(x + 1) C m ≤ D m < ∨ m > Câu 15 [1226d] Tìm tham số thực m để phương trình A m < B m < ∨ m = Câu 16 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C D Vô nghiệm log 2x Câu 17 [1229d] Đạo hàm hàm số y = x2 − log 2x − ln 2x 1 − ln 2x 0 B y = C y = D y = A y0 = 2x3 ln 10 x3 x3 ln 10 2x3 ln 10 √ Câu 18 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị ngun dương m để phương trình cho có nghiệm phân biệt? A 62 B 64 C 63 D Vô số √ Câu 19 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị nhỏ biểu thức P" = x!+ 2y thuộc tập đây? " ! 5 A (1; 2) B ;3 C [3; 4) D 2; 2 Câu 20 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 B m ≥ C m ≤ D m < A m > 4 4 + + ··· + n Mệnh đề sau đúng? Câu 21 [3-1132d] Cho dãy số (un ) với un = n2 + A lim un = B Dãy số un giới hạn n → +∞ C lim un = D lim un = n−1 Câu 22 Tính lim n +2 A B C D 3 7n − 2n + Câu 23 Tính lim 3n + 2n2 + A B C D - 3 Câu 24 Dãy số sau có giới hạn khác 0? n+1 sin n A B C D √ n n n n Câu 25 Phát biểu sau sai? A lim k = với k > n C lim un = c (Với un = c số) B lim qn = với |q| > 1 D lim √ = n ! 3n + 2 Câu 26 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D ! 1 Câu 27 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B C D 2 Câu 28 Trong khẳng định có khẳng định đúng? Trang 2/5 Mã đề (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C D Câu 29 Trong mệnh đề đây, mệnh đề nào!sai? un A Nếu lim un = a , lim = ±∞ lim = B Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un C Nếu lim un = a > lim = lim = +∞ ! un = −∞ D Nếu lim un = a < lim = > với n lim Câu 30 Tính lim A n+3 B C D [ = 60◦ , S O Câu 31 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ √ với mặt đáy S O = a Khoảng cách từ A đến (S √ BC) √ a 57 2a 57 a 57 B a 57 D A C 19 17 19 Câu 32 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab A √ B D √ C √ 2 2 a +b a +b a +b a2 + b2 Câu 33 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ 2a a a A B C a D 2 0 0 Câu 34.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D Câu 35 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ b a2 + c2 abc b2 + c2 c a2 + b2 a b2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 36 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vuông góc với ∆ AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ √ √ a a A 2a B a C D Câu 37 [2] Cho chóp S ABCD có đáy hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A 2a B a C D a Trang 3/5 Mã đề d = 120◦ Câu 38 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a B 3a C 2a D 4a A Câu 39 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √ √ a a B a D a A C Câu 40 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 2a 5a a 8a B C D A 9 9 Câu 41 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số B Cả ba câu sai C F(x) = G(x) khoảng (a; b) D G(x) = F(x) − C khoảng (a; b), với C số Câu 42 Trong khẳng định sau, khẳng định sai? A Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số B F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x C Z F(x) = − cos x nguyên hàm hàm số f (x) = sin x u0 (x) D dx = log |u(x)| + C u(x) Câu 43 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Khơng có câu B Câu (II) sai sai C Câu (III) sai D Câu (I) sai Câu 44 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai sai B Cả hai C Chỉ có (I) D Chỉ có (II) Câu 45 đề sai? Z Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z A ( f (x) + g(x))dx = f (x)dx + g(x)dx B ( f (x) − g(x))dx = f (x)dx − g(x)dx Z Z Z Z Z C k f (x)dx = f f (x)dx, k ∈ R, k , D f (x)g(x)dx = f (x)dx g(x)dx Trang 4/5 Mã đề Câu 46 Z Các khẳng định sau Z sai? A Z C Z f (x)dx = F(x) +C ⇒ f (u)dx = F(u) +C B f (x)dx = F(x) + C ⇒ !0 Z Z k f (x)dx = k f (x)dx, k số D f (x)dx = f (x) Câu 47 Hàm số f có nguyên hàm K A f (x) có giá trị lớn K C f (x) xác định K Z f (t)dt = F(t) + C B f (x) có giá trị nhỏ K D f (x) liên tục K Câu 48 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có f (x) = F(x) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ (a; b), ta có F (x) = f (x), ngồi F (a+ ) = f (a) F (b− ) = f (b) D Với x ∈ [a; b], ta có F (x) = f (x) Câu 49 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z B Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z C Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Câu 50 Z Trong cácα+1khẳng định sau, khẳng định sai? Z x + C, C số B dx = x + C, C số A xα dx = α+1 Z Z C 0dx = C, C số D dx = ln |x| + C, C số x - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D A D B D C C C 12 D 14 D C C 18 A B 20 C C 21 D 22 23 D 24 25 B 26 27 B 28 29 D 16 B 17 19 10 13 15 C B A 11 C 30 B D B C 31 A 32 D 33 A 34 D D 35 D 36 37 D 38 A 39 41 40 A C D 43 A 42 D 44 D 45 D 46 A 47 D 48 49 A 50 A C ... có khẳng định đúng? Trang 2/5 Mã đề (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C D Câu 29 Trong mệnh đề đây, mệnh đề nào!sai? un A Nếu lim un = a ,... dx = ln |x| + C, C số x - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D A D B D C C C 12 D 14 D C C 18 A B 20 C C 21 D 22 23 D 24 25 B 26 27... khẳng định A Cả hai sai B Cả hai C Chỉ có (I) D Chỉ có (II) Câu 45 đề sai? Z Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z A ( f (x) + g(x))dx = f (x)dx + g(x)dx B ( f (x)

Ngày đăng: 08/03/2023, 07:31

w