1. Trang chủ
  2. » Tất cả

Đề ôn thpt môn toán (26)

6 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 113,61 KB

Nội dung

Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Tính lim x→5 x2 − 12x + 35 25 − 5x A +∞ B − 2 5 C −∞ D 2 5 Câu 2 Tính giới hạn lim x→2 x2 − 5x + 6 x − 2 A[.]

Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi x2 − 12x + 35 x→5 25 − 5x A +∞ B − x − 5x + Câu Tính giới hạn lim x→2 x−2 A B −1 √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − 1 A B − n2 bằng? Câu [1] Tính lim 2n + 1 A B 2n − Câu Tính lim 2n + 3n + A B 1 − 2n Câu [1] Tính lim bằng? 3n + A B 3 Câu Dãy số có giới hạn 0? n3 − 3n A un = n2 − 4n B un = n+1 Câu Tính lim Câu Tính lim x→3 A −3 x2 − x−3 B C −∞ D C D 1 C − D C − D C −∞ D +∞ C − D !n −2 C un = !n D un = C D +∞ Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ f (x) a A lim = B lim [ f (x) + g(x)] = a + b x→+∞ g(x) x→+∞ b C lim [ f (x)g(x)] = ab D lim [ f (x) − g(x)] = a − b x→+∞ 4x + Câu 10 [1] Tính lim bằng? x→−∞ x + A −4 B −1 x→+∞ C D Câu 11 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≥ B m ≤ C m > D m < Câu 12 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B ≤ m ≤ C ≤ m ≤ D < m ≤ log 2x Câu 13 [1229d] Đạo hàm hàm số y = x2 1 − log 2x − ln 2x − ln 2x A y0 = B y0 = C y0 = D y0 = 2x ln 10 x x ln 10 2x3 ln 10 Trang 1/5 Mã đề Câu 14 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 6) B (2; 4; 4) C (1; 3; 2) D (2; 4; 3) √ √ Câu 15 [12215d] Tìm m để phương trình x+ 1−x − 4.2 x+ 1−x − 3m + = có nghiệm A < m ≤ B ≤ m ≤ C m ≥ D ≤ m ≤ 4 Câu 16 [1224d] Tìm tham số thực m để phương trình log3 x + log3 x + m = có nghiệm 1 1 B m > C m ≤ D m < A m ≥ 4 4 x−3 x−2 x−3 x−2 Câu 17 [12212d] Số nghiệm phương trình − 2.2 − 3.3 + = A B Vô nghiệm C D 2 Câu 18 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C Vơ số D Câu 19 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D √ Câu 20 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị ngun dương m để phương trình cho có nghiệm phân biệt? A 63 B 62 C Vô số D 64 + + ··· + n Câu 21 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + A lim un = B Dãy số un khơng có giới hạn n → +∞ C lim un = D lim un = n−1 Câu 22 Tính lim n +2 A B C D Câu 23 Dãy số sau có giới hạn khác 0? 1 A √ B n n C n+1 n D sin n n Câu 24 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C D Câu 25 Phát biểu sau sai? = với k > nk C lim qn = với |q| > D lim √ = n un Câu 26 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A B +∞ C −∞ D A lim un = c (Với un = c số) B lim Trang 2/5 Mã đề 12 + 22 + · · · + n2 Câu 27 [3-1133d] Tính lim n3 A B +∞ ! 1 + + ··· + Câu 28 Tính lim 1.2 2.3 n(n + 1) A B Câu 29 Dãy số sau có giới hạn 0? − 2n n2 + n + A un = B u = n 5n + n2 (n + 1)2 cos n + sin n Câu 30 Tính lim n2 + A B −∞ C D C D C un = C n2 − 3n n2 D un = n2 − 5n − 3n2 D +∞ d = 30◦ , biết S BC tam giác Câu 31 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 B C D A 13 16 26 Câu 32 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab A √ B C √ D √ 2 2 a +b a +b a +b a2 + b2 0 0 Câu 33.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D 2 √ Câu 34 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ a 38 3a 3a 58 3a 38 A B C D 29 29 29 29 Câu 35 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD √ √ = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ a a C A B a D 2a 2 3a Câu 36 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a 2a a a A B C D 3 Câu 37 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab A √ B √ C D √ a +b a2 + b2 a2 + b2 a2 + b2 [ = 60◦ , S O Câu 38 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ Khoảng cách từ A đến (S√BC) √ √ a 57 2a 57 a 57 A a 57 B C D 17 19 19 Trang 3/5 Mã đề Câu 39 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a B a C a D A 2a Câu 40 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường√thẳng BD0 √ √ √ abc b2 + c2 c a2 + b2 a b2 + c2 b a2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 41 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai sai B Cả hai C Chỉ có (II) D Chỉ có (I) Câu 42 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (II) B (I) (III) C (II) (III) D Cả ba mệnh đề Câu 43 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Khơng có câu B Câu (II) sai sai Câu 44 Z Các khẳng định sau Z sai? f (x)dx = F(x) + C ⇒ A Z C f (x)dx = F(x) +C ⇒ C Câu (III) sai f (t)dt = F(t) + C B Z f (u)dx = F(u) +C D Câu 45 Hàm số f có nguyên hàm K A f (x) có giá trị lớn K C f (x) liên tục K Z Z D Câu (I) sai Z k f (x)dx = k f (x)dx, k số !0 f (x)dx = f (x) B f (x) xác định K D f (x) có giá trị nhỏ K Câu 46 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A Cả ba câu sai B F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số C G(x) = F(x) − C khoảng (a; b), với C số D F(x) = G(x) khoảng (a; b) Trang 4/5 Mã đề Câu 47 khẳng định sau, khẳng định sai? Z Trong u0 (x) dx = log |u(x)| + C A u(x) B F(x) = − cos x nguyên hàm hàm số f (x) = sin x C Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số D F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x Câu 48 Z Cho hàm sốZf (x), g(x) liên tục R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? k f (x)dx = f A Z C f (x)dx, k ∈ R, k , Z Z ( f (x) + g(x))dx = f (x)dx + g(x)dx f (x)g(x)dx = B Z D Câu 49 Z Trong khẳng định sau, khẳng định sai? Z 0dx = C, C số A Z C B Z dx = ln |x| + C, C số x D f (x)dx g(x)dx Z Z ( f (x) − g(x))dx = f (x)dx − g(x)dx xα dx = xα+1 + C, C số α+1 dx = x + C, C số Câu 50 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) + g(x)]dx = A Z B Z C Z D f (x)dx + Z g(x)dx, với f (x), g(x) liên tục R Z [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R f (x)dx = f (x) + C, với f (x) có đạo hàm R - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 D C A C C C B B 10 A 11 A D 12 A 13 14 A C 15 D 16 17 A C 18 B B 19 C 20 21 C 22 A 23 C 24 25 C 26 A D 27 A 28 29 A 30 A 31 A 32 33 A 34 35 A 36 37 A 38 C C 39 C 40 41 C 42 A 43 A 45 C 47 A 49 C B C 46 C 50 D 44 48 B D B C ... mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (II) B (I) (III) C (II) (III) D Cả ba mệnh đề Câu... với f (x) có đạo hàm R - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 D C A C C C B B 10 A 11 A D 12 A 13 14 A C 15 D 16 17 A C 18 B B 19 C... nguyên hàm hàm số f (x) = + tan2 x Câu 48 Z Cho hàm sốZf (x), g(x) liên tục R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? k f (x)dx = f A Z C f (x)dx, k ∈ R, k , Z Z ( f (x) + g(x))dx = f (x)dx + g(x)dx

Ngày đăng: 08/03/2023, 07:30

w