Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Cho hàm số y = f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là[.]
Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi Câu Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim+ f (x) = f (a) lim+ f (x) = f (b) B lim+ f (x) = f (a) lim− f (x) = f (b) x→a x→a x→b x→b C lim− f (x) = f (a) lim+ f (x) = f (b) D lim− f (x) = f (a) lim− f (x) = f (b) x→a x→a x→b Câu Tính lim x→+∞ x→b x−2 x+3 C −3 B − Câu Dãy số có giới hạn 0? !n n3 − 3n −2 A un = B un = n − 4n C un = n+1 x+1 Câu Tính lim x→+∞ 4x + 1 B C A Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 D Nếu hàm số có đạo hàm x0 hàm số liên tục điểm A x2 − Câu Tính lim x→3 x − A +∞ x3 − Câu Tính lim x→1 x − A D !n D un = D B C D −3 B +∞ C D −∞ Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim+ f (x) = lim− f (x) = +∞ B lim f (x) = f (a) x→a x→a x→a C f (x) có giới hạn hữu hạn x → a D lim+ f (x) = lim− f (x) = a x→a x − 12x + 35 25 − 5x B −∞ √ √ 4n2 + − n + Câu 10 Tính lim 2n − 3 A B Câu 11 [1225d] Tìm tham số thực m để phương x≥1 A m ≥ B m ≤ x→a Câu Tính lim x→5 A − √ Câu 12 [12215d] Tìm m để phương trình x+ A m ≥ B < m ≤ 1−x2 D +∞ C D +∞ C trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực C m < √ D m > − 3m + = có nghiệm C ≤ m ≤ D ≤ m ≤ 4 − 4.2 x+ 1−x2 Trang 1/5 Mã đề Câu 13 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B Vô nghiệm C D Câu 14 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị nhỏ biểu thức P = x + 2y thuộc tập " đây? ! " ! 5 A [3; 4) B (1; 2) C ;3 D 2; 2 √ ab Câu 15 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 3) B (2; 4; 4) C (1; 3; 2) D (2; 4; 6) Câu 16 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B < m ≤ C ≤ m ≤ D < m ≤ √ Câu 17 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 62 B 64 C 63 D Vơ số Câu 18 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 B m ≤ C m ≥ D m > A m < 4 4 x Câu 19 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 +3)−log2 (2020−21−x ) A 13 B log2 13 C 2020 D log2 2020 − xy = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x√+ y √ √ √ 11 − 19 18 11 − 29 11 − 11 + 19 A Pmin = B Pmin = C Pmin = D Pmin = 21 Câu 21 Trong mệnh đề đây, mệnh đề sai? ! un A Nếu lim un = a < lim = > với n lim = −∞ B Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un C Nếu lim un = a , lim = ±∞ lim = !vn un D Nếu lim un = a > lim = lim = +∞ Câu 20 [12210d] Xét số thực dương x, y thỏa mãn log3 Câu 22 Dãy số sau có giới hạn khác 0? sin n A B n n Câu 23 A C n+1 n 1 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n B C 2 7n2 − 2n3 + Tính lim 3n + 2n2 + B C D √ n ! Câu 24 A Câu 25 Trong khẳng định có khẳng định đúng? D +∞ D - (I) lim nk = +∞ với k nguyên dương Trang 2/5 Mã đề (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A Câu 26 Tính lim A −∞ B cos n + sin n n2 + B +∞ C D C D un Câu 27 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A B +∞ C D −∞ ! 3n + 2 Câu 28 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D n−1 Câu 29 Tính lim n +2 A B C D Câu 30 Tính lim n+3 A B C D d = 30◦ , biết S BC tam giác Câu 31 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 13 16 26 Câu 32 [2] Cho chóp S ABCD có đáy hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A a B C 2a D a √ Câu 33 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 3a 58 3a 38 a 38 B C D A 29 29 29 29 3a Câu 34 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a 2a a A B C D 3 Câu 35 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab A B √ C √ D √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 36 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng 0 (AB0C) √ (A C D) √ √ √ 2a a a A B a C D 2 Trang 3/5 Mã đề [ = 60◦ , S O Câu 37 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ √ với mặt đáy S O = a Khoảng cách từ A đến (S √ BC) √ 2a 57 a 57 a 57 B a 57 D A C 19 17 19 [ = 60◦ , S O Câu 38 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a √ Khoảng cách từ O đến (S BC) √ √ 2a 57 a 57 a 57 A B C a 57 D 19 19 17 Câu 39 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab A √ B √ C D √ a +b a2 + b2 a2 + b2 a2 + b2 0 0 Câu 40.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a B C D A Câu 41 Trong khẳng định sau, khẳng định sai?√ A F(x) = x nguyên hàm hàm số f (x) = x B F(x) = x2 nguyên hàm hàm số f (x) = 2x C Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số D Cả ba đáp án Câu 42 Mệnh đề sau sai? A Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Z B Nếu F(x) nguyên hàm f (x) (a; b) C số !0 Z C f (x)dx = f (x) f (x)dx = F(x) + C D F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) Câu 43 Hàm số f có nguyên hàm K A f (x) có giá trị nhỏ K C f (x) có giá trị lớn K B f (x) liên tục K D f (x) xác định K Câu 44 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (I) B Chỉ có (II) C Cả hai câu D Cả hai câu sai Câu 45 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (II) B Cả hai sai C Chỉ có (I) D Cả hai Trang 4/5 Mã đề Câu 46 Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? ( f (x) + g(x))dx = A Z C ( f (x) − g(x))dx = f (x)dx + Z g(x)dx B Z f (x)dx − Z g(x)dx D f (x)g(x)dx = f (x)dx g(x)dx Z k f (x)dx = f f (x)dx, k ∈ R, k , Câu 47 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A G(x) = F(x) − C khoảng (a; b), với C số B Cả ba câu sai C F(x) = G(x) khoảng (a; b) D F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số Câu 48 Z Trong cácα+1khẳng định sau, khẳng định sai? Z x + C, C số B dx = ln |x| + C, C số A xα dx = α+1 Z Z x C 0dx = C, C số D dx = x + C, C số Câu 49 Trong khẳng định sau, khẳng định sai? A F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x B F(x) = − cos x nguyên hàm hàm số f (x) = sin x C Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Z u0 (x) dx = log |u(x)| + C D u(x) Câu 50 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có f (x) = F(x) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 A B C D C C C B C 10 B 11 A 12 C C 13 D 14 15 D 16 B 18 B 17 A 19 B D 21 20 C 22 C 23 C 24 25 C 26 29 D 30 C 34 35 C 36 37 D 38 39 A 40 41 A 42 B D C D B C D 44 45 A 46 47 A 48 A 49 B 32 B 33 43 C 28 A 27 A 31 D D 50 C B D ... có (II) B Cả hai sai C Chỉ có (I) D Cả hai Trang 4/5 Mã đề Câu 46 Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? ( f (x) + g(x))dx = A Z C ( f (x) − g(x))dx... f (a) F (b− ) = f (b) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 A B C D C C C B C 10 B 11 A 12 C C 13 D 14 15 D 16 B 18 B 17 A 19 B D... − 19 18 11 − 29 11 − 11 + 19 A Pmin = B Pmin = C Pmin = D Pmin = 21 Câu 21 Trong mệnh đề đây, mệnh đề sai? ! un A Nếu lim un = a < lim = > với n lim = −∞ B Nếu lim un = +∞ lim = a > lim(un