1. Trang chủ
  2. » Tất cả

Đề ôn thpt môn toán (100)

6 3 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 113,84 KB

Nội dung

Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 [1] Tính lim x→−∞ 4x + 1 x + 1 bằng? A −4 B 4 C −1 D 2 Câu 2 Tính giới hạn lim x→+∞ 2x + 1 x + 1 A 2 B 1 C[.]

Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi 4x + Câu [1] Tính lim bằng? x→−∞ x + A −4 B 2x + Câu Tính giới hạn lim x→+∞ x + A B C −1 C x3 − Câu Tính lim x→1 x − A −∞ B +∞ x+1 Câu Tính lim x→−∞ 6x − 1 A B 2n + Câu Tính giới hạn lim 3n + A B Câu Giá trị lim (3x2 − 2x + 1) x→1 A +∞ B D D −1 C D C D C D C D C un = n2 − 4n D un = Câu Dãy số! có giới hạn 0?! n n −2 A un = B un = √ √ 4n2 + − n + Câu Tính lim 2n − A +∞ B C x−3 Câu [1] Tính lim bằng? x→3 x + A −∞ B C +∞ D C D Câu 10 Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B n3 − 3n n+1 D √ Câu 11 [1228d] Cho phương trình x − log3 x − 1) − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 62 B 63 C Vô số D 64 (2 log23 4x Câu 12 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 2020 B 2020 C 13 D log2 13 Câu 13 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 √ Câu 14 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị " nhỏ! biểu thức P" = x!+ 2y thuộc tập đây? 5 A 2; B ;3 C (1; 2) D [3; 4) 2 Trang 1/5 Mã đề Câu 15 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C D Vô nghiệm log 2x Câu 16 [1229d] Đạo hàm hàm số y = x2 − ln 2x 1 − log 2x − ln 2x A y0 = B y0 = C y0 = D y0 = x ln 10 2x ln 10 x 2x3 ln 10 Câu 17 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x+1 y y A xy = −e − B xy = −e + C xy0 = ey + D xy0 = ey − Câu 18 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A Vô số B C D q Câu 19 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 4] B m ∈ [0; 2] C m ∈ [−1; 0] D m ∈ [0; 1] Câu 20 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≥ B m > C m ≤ D m < Câu 21 Phát biểu sau sai? B lim √ = n A lim qn = với |q| > C lim = với k > nk D lim un = c (Với un = c số) 12 + 22 + · · · + n2 Câu 22 [3-1133d] Tính lim n3 A B 3 Câu 23 Dãy số sau có giới hạn 0? n2 − 3n n2 + n + A un = B u = n n2 (n + 1)2 C +∞ C un = D − 2n 5n + n2 ! 1 + + ··· + 1+2 + + ··· + n B C D un = n2 − 5n − 3n2 Câu 24 [3-1131d] Tính lim A n−1 Câu 25 Tính lim n +2 A B Câu 26 Dãy số sau có giới hạn khác 0? 1 A √ B n n C D +∞ D n+1 n ! 3n + 2 Câu 27 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D 2 7n − 2n + Câu 28 Tính lim 3n + 2n2 + A B C - D 3 C sin n n D Trang 2/5 Mã đề Câu 29 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A −∞ Câu 30 Tính lim A n+3 B C +∞ B C un D D Câu 31 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A 2a B C a D a [ = 60◦ , S O Câu 32 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a Khoảng cách từ A đến (S√BC) √ √ 2a 57 a 57 a 57 C A B a 57 D 19 19 17 0 0 Câu 33.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D 2 Câu 34 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 5a 2a a 8a B C D A 9 9 Câu 35 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng 0 (AB0C) √ (A C D) √ √ √ 2a a a D A B C a 2 Câu 36 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ b a2 + c2 a b2 + c2 abc b2 + c2 c a2 + b2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 37 [2] Cho hình chóp S ABCD có đáy hình vuông cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng BD S C √ √ √ √ a a a A a B C D Câu 38 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC 1 ab ab A √ B √ C √ D 2 2 2 a + b2 a +b a +b a +b Câu 39 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab A B √ C √ D √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 40 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ √ √ a a A 2a B a C D Trang 3/5 Mã đề Câu 41 Z Trong khẳng định sau, khẳng định sai? Z dx = x + C, C số A Z C 0dx = C, C số dx = ln |x| + C, C số Z x xα+1 + C, C số D xα dx = α+1 B Câu 42 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (II) B Cả hai C Cả hai sai D Chỉ có (I) Câu 43 đề sai? Z Z Cho hàm sốZf (x), g(x) liên tục R Trong cácZmệnh đề sau, mệnh Z A k f (x)dx = f f (x)dx, k ∈ R, k , B ( f (x) − g(x))dx = f (x)dx − g(x)dx Z Z Z Z Z Z C ( f (x) + g(x))dx = f (x)dx + g(x)dx D f (x)g(x)dx = f (x)dx g(x)dx Câu 44 Z Các khẳng định Z sau sai? Z f (x)dx, k số B f (x)dx = F(x) + C ⇒ !0 Z Z Z f (x)dx = f (x) C f (x)dx = F(x) +C ⇒ f (u)dx = F(u) +C D A k f (x)dx = k Z f (t)dt = F(t) + C Câu 45 Trong khẳng định sau, khẳng định sai? A Cả ba đáp án √ B F(x) = x nguyên hàm hàm số f (x) = x C F(x) = x2 nguyên hàm hàm số f (x) = 2x D Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số Câu 46 Cho hai hàm y = f (x), y = g(x) Z có đạo hàm Z R Phát biểu sau đúng? A Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z B Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z C Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Câu 47 Hàm số f có nguyên hàm K A f (x) có giá trị lớn K C f (x) có giá trị nhỏ K B f (x) xác định K D f (x) liên tục K Câu 48 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A G(x) = F(x) − C khoảng (a; b), với C số B F(x) = G(x) khoảng (a; b) C F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số D Cả ba câu sai Câu 49 khẳng định sau, khẳng định sai? Z Trong u0 (x) A dx = log |u(x)| + C u(x) Trang 4/5 Mã đề B F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x C F(x) = − cos x nguyên hàm hàm số f (x) = sin x D Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Câu 50 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu B Cả hai câu sai C Chỉ có (II) D Chỉ có (I) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 A B C D A B B 10 B 14 B 15 A D B 16 A 17 D 19 18 C 20 A C 21 A 22 A 23 C 24 25 C 26 27 A B D 28 29 D 30 31 D 32 33 D 34 A 35 D 36 37 C 12 11 A 13 B B 39 C C B C B 38 C 40 C 41 D 42 A 43 D 44 C 46 C 45 47 B D 48 A 49 A 50 A ... Chỉ có (II) D Chỉ có (I) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 A B C D A B B 10 B 14 B 15 A D B 16 A 17 D 19 18 C 20 A C 21 A 22 A 23... khẳng định A Chỉ có (II) B Cả hai C Cả hai sai D Chỉ có (I) Câu 43 đề sai? Z Z Cho hàm sốZf (x), g(x) liên tục R Trong cácZmệnh đề sau, mệnh Z A k f (x)dx = f f (x)dx, k ∈ R, k , B ( f (x) − g(x))dx... với ∆ AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ √ √ a a A 2a B a C D Trang 3/5 Mã đề Câu 41 Z Trong khẳng định sau, khẳng định sai? Z dx = x + C, C số A Z C 0dx = C, C số dx = ln

Ngày đăng: 07/03/2023, 22:18

w