Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Cho f (x) = sin2 x − cos2 x − x Khi đó f ′(x) bằng A 1 + 2 sin 2x B 1 − sin 2x C −1 + 2 sin 2x D −1 + sin x[.]
Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi Câu Cho f (x) = sin2 x − cos2 x − x Khi f (x) A + sin 2x B − sin 2x C −1 + sin 2x D −1 + sin x cos x Câu !Dãy số sau có giới !n hạn 0? n A B 3 !n C e !n D − C D +∞ Câu Tính lim x→1 A −∞ x3 − x−1 B x+1 Câu Tính lim x→−∞ 6x − 1 A B √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − 1 A B 2−n Câu Giá trị giới hạn lim n+1 A B 2x + Câu Tính giới hạn lim x→+∞ x + 1 A B Câu Tính lim x→3 A x2 − x−3 B +∞ C D C D − C D −1 C D −1 C −3 D Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 D Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm Câu 10 Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim+ f (x) = lim− f (x) = a B lim f (x) = f (a) x→a x→a C f (x) có giới hạn hữu hạn x → a x→a D lim+ f (x) = lim− f (x) = +∞ x→a x→a Câu 11 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 6) B (2; 4; 4) C (2; 4; 3) D (1; 3; 2) Câu 12 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A Vô nghiệm B C D Câu 13 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 13 B 13 C 2020 D log2 2020 Trang 1/5 Mã đề Câu 14 [12216d] Tìm tất giá trị thực tham số m để phương trình log23 √ i h có nghiệm thuộc đoạn 1; A m ∈ [0; 4] B m ∈ [−1; 0] C m ∈ [0; 2] q x+ log23 x + 1+4m−1 = D m ∈ [0; 1] Câu 15 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C Vô nghiệm D Câu 16 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≥ B m < C m > D m ≤ log(mx) Câu 17 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < ∨ m > B m < C m ≤ D m < ∨ m = log 2x Câu 18 [1229d] Đạo hàm hàm số y = x2 − ln 2x − log 2x 1 − ln 2x 0 A y0 = B y0 = C y = D y = x ln 10 x3 2x3 ln 10 2x3 ln 10 Câu 19 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D Câu 20 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b B C D A 2 Câu 21 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un B Nếu lim un = a < lim = > với n lim = −∞ v n ! un C Nếu lim un = a , lim = ±∞ lim = !vn un D Nếu lim un = a > lim = lim = +∞ Câu 22 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A Câu 23 Tính lim B C D cos n + sin n n2 + B −∞ C D +∞ + + ··· + n Câu 24 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + A Dãy số un khơng có giới hạn n → +∞ B lim un = C lim un = D lim un = A Trang 2/5 Mã đề 1 1 Câu 25 Tính lim + + ··· + 1.2 2.3 n(n + 1) A ! B Câu 26 Dãy số sau có giới hạn khác 0? n+1 A B n n C C √ n D D sin n n Câu 27 Dãy số sau có giới hạn 0? − 2n n2 − 3n n2 − n2 + n + A un = B u = C u = D u = n n n 5n + n2 n2 5n − 3n2 (n + 1)2 n−1 Câu 28 Tính lim n +2 A B C D ! 1 Câu 29 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n B C D +∞ A 2 7n2 − 2n3 + Câu 30 Tính lim 3n + 2n2 + A B - C D 3 0 0 Câu 31 [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b, AA = c Khoảng cách từ điểm A đến đường√thẳng BD0 √ √ √ a b2 + c2 c a2 + b2 b a2 + c2 abc b2 + c2 B √ C √ D √ A √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 32 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab B √ C √ D A √ a + b2 a2 + b2 a2 + b2 a2 + b2 [ = 60◦ , S O Câu 33 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a √ Khoảng cách từ A đến (S√BC) √ a 57 2a 57 a 57 A B C D a 57 17 19 19 0 0 Câu 34 [3] Cho hình lập phương ABCD.A B C D có cạnh a Khoảng cách hai mặt phẳng 0 (AB0C) √ (A C D) √ √ √ 2a a a A B C a D Câu 35 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a C D A a B 2 [ = 60◦ , S O Câu 36 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ BC) √ với mặt đáy S O = a Khoảng cách từ O đến (S √ √ a 57 a 57 2a 57 A C B a 57 D 17 19 19 Câu 37 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vuông góc với ∆ AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) Trang 3/5 Mã đề √ √ √ a a B C D 2a 2 Câu 38 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a A a C D a B √ A a Câu 39 [2] Cho chóp S ABCD có đáy hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a D a B a C A 2a Câu 40 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B C D a 6 Câu 41 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A Cả ba mệnh đề B (I) (II) C (II) (III) D (I) (III) Câu 42 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (I) B Chỉ có (II) C Cả hai sai D Cả hai Câu 43 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) − g(x)]dx = A f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z Z C [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z Z D k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R B Câu 44 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A F(x) = G(x) khoảng (a; b) B G(x) = F(x) − C khoảng (a; b), với C số C F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số D Cả ba câu sai Trang 4/5 Mã đề Câu 45 Trong khẳng định sau, khẳng định sai?√ A F(x) = x nguyên hàm hàm số f (x) = x B Cả ba đáp án C F(x) = x2 nguyên hàm hàm số f (x) = 2x D Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số Câu 46 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu sai B Chỉ có (II) C Cả hai câu D Chỉ có (I) Câu 47 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ (a; b), ta có f (x) = F(x) D Với x ∈ [a; b], ta có F (x) = f (x) Câu 48 Trong khẳng định sau, khẳng định sai? A F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x B Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số C Z F(x) = − cos x nguyên hàm hàm số f (x) = sin x u0 (x) dx = log |u(x)| + C D u(x) Câu 49 f (x), g(x) liên Z Cho hàm số Z Z tục R Trong cácZmệnh đề sau, mệnh Z đề sai? A f (x)g(x)dx = f (x)dx g(x)dx B k f (x)dx = f f (x)dx, k ∈ R, k , Z Z Z Z Z Z C ( f (x) + g(x))dx = f (x)dx + g(x)dx D ( f (x) − g(x))dx = f (x)dx − g(x)dx Câu 50 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 C A C D C D A D A 10 B 11 A 12 B 13 A 14 B 15 A 16 A 17 19 D 18 A 20 B 21 D 23 A 25 29 C B 33 C 35 A 37 B 39 41 43 C 24 C B 28 A 27 A 31 22 26 B D D B D 30 B 32 B 34 B 36 C 38 C 40 B 42 B 44 B 45 A 46 47 A 48 49 A 50 C D C ... C D - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 C A C D C D A D A 10 B 11 A 12 B 13 A 14 B 15 A 16 A 17 19 D 18 A 20 B 21 D 23 A 25 29 C... nghiệm nhất? A B C D Câu 20 [122 18d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b B C D A 2 Câu 21 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un = +∞... hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A Cả ba mệnh đề B (I) (II) C (II) (III)