1. Trang chủ
  2. » Tất cả

Đề ôn thpt toán 12 (319)

6 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 110,83 KB

Nội dung

Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Giá trị của lim x→1 (2x2 − 3x + 1) là A +∞ B 0 C 1 D 2 Câu 2 Tính giới hạn lim x→+∞ 2x + 1 x + 1 A 1 2 B 2[.]

Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi Câu Giá trị lim(2x2 − 3x + 1) x→1 A +∞ B 2x + Câu Tính giới hạn lim x→+∞ x + 1 A B 2 C D C −1 D C D C D C −1 D C D −∞ C −3 D !n −2 C un = D un = C D Câu Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B x+1 x→+∞ 4x + Câu Tính lim A B 4x + bằng? x→−∞ x + A −4 B x−3 Câu [1] Tính lim bằng? x→3 x + A +∞ B Câu [1] Tính lim Câu Tính lim A +∞ x→3 x −9 x−3 B Câu Dãy số !n có giới hạn 0? A un = B un = n2 − 4n √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − 1 A B − 4 − 2n Câu 10 [1] Tính lim bằng? 3n + 1 B A C n3 − 3n n+1 D − Câu 11 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Câu 12 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m < B m ≥ C m ≤ D m > 4 4 √ Câu 13 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A Vô số B 63 C 64 D 62 Trang 1/5 Mã đề Câu 14 [12216d] Tìm tất giá trị thực tham số m để phương trình log23 √ i h q x+ log23 x + 1+4m−1 = có nghiệm thuộc đoạn 1; A m ∈ [−1; 0] B m ∈ [0; 2] C m ∈ [0; 1] D m ∈ [0; 4] log(mx) Câu 15 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < ∨ m > B m < C m < ∨ m = D m ≤ Câu 16 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≥ B m > C m < D m ≤ − xy = 3xy + x + 2y − Tìm giá trị nhỏ Câu 17 [12210d] Xét số thực dương x, y thỏa mãn log3 x + 2y Pmin P = x√+ y √ √ √ 11 + 19 11 − 19 18 11 − 29 11 − A Pmin = B Pmin = C Pmin = D Pmin = 9 21 √ √ − 3m + = có nghiệm C < m ≤ D m ≥ Câu 19 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D Trong khẳng định sau đây, khẳng định đúng? Câu 20 [3-12217d] Cho hàm số y = ln x+1 y y A xy = −e + B xy = −e − C xy0 = ey − D xy0 = ey + ! 1 Câu 21 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n B +∞ C D A 2 2 + + ··· + n Câu 22 [3-1133d] Tính lim n3 A B C D +∞ 3 cos n + sin n Câu 23 Tính lim n2 + A B −∞ C +∞ D Câu 18 [12215d] Tìm m để phương trình x+ B ≤ m ≤ A ≤ m ≤ 4 Câu 24 Dãy số sau có giới hạn 0? − 2n n2 − B u = A un = n 5n + n2 5n − 3n2 2n2 − Câu 25 Tính lim 3n + n4 A B 1−x2 − 4.2 x+ 1−x2 C un = n2 − 3n n2 D un = n2 + n + (n + 1)2 C D ! 3n + 2 Câu 26 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D Câu 27 Tính lim n+3 A B C D Trang 2/5 Mã đề Câu 28 Dãy số sau có giới hạn khác 0? n+1 B A n n ! 1 Câu 29 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B Câu 30 Phát biểu sau sai? A lim un = c (Với un = c số) C lim qn = với |q| > C sin n n C D √ n D = với k > nk D lim √ = n B lim Câu 31 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A B a C D 2 √ Câu 32 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 3a 38 3a 58 a 38 B C D A 29 29 29 29 d = 120◦ Câu 33 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 4a B C 3a D 2a d = 30◦ , biết S BC tam giác Câu 34 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 13 16 26 Câu 35 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ a a 2a A B C D a 3 0 0 Câu 36 [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab 1 B √ C D √ A √ a +b a2 + b2 a2 + b2 a2 + b2 [ = 60◦ , S O Câu 37 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a Khoảng cách từ O đến (S√BC) √ √ a 57 2a 57 a 57 A B a 57 C D 17 19 19 Câu 38 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B a C D Câu 39 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD Trang 3/5 Mã đề √ a A √ a B √ C a √ D a 0 0 Câu 40.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D Câu 41 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z B k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z C [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z D f (x)dx = f (x) + C, với f (x) có đạo hàm R A Z Câu 42 Hàm số f có nguyên hàm K A f (x) có giá trị nhỏ K C f (x) liên tục K B f (x) có giá trị lớn K D f (x) xác định K Câu 43 Trong khẳng định sau, khẳng định sai? A Cả ba đáp án B F(x) = x2 nguyên hàm hàm số f (x) = 2x C Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số √ D F(x) = x nguyên hàm hàm số f (x) = x Câu 44 Các khẳng !0 định sau sai? Z Z Z f (x)dx = f (x) B k f (x)dx = k f (x)dx, k số A Z Z Z Z C f (x)dx = F(x) +C ⇒ f (u)dx = F(u) +C D f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C Câu 45 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (II) B Chỉ có (I) C Cả hai câu D Cả hai câu sai Câu 46 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Trang 4/5 Mã đề Câu 47 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A Cả ba câu sai B F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số C G(x) = F(x) − C khoảng (a; b), với C số D F(x) = G(x) khoảng (a; b) Câu 48 khẳng định sau, khẳng định sai? Z Trong u0 (x) A dx = log |u(x)| + C u(x) B F(x) = − cos x nguyên hàm hàm số f (x) = sin x C Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số D F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x Câu 49 Mệnh đề sau sai? Z A Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C B F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) !0 Z C f (x)dx = f (x) D Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Câu 50 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A Cả ba mệnh đề B (I) (II) C (I) (III) D (II) (III) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 B B B D 17 18 A B 20 22 C 23 D 24 A 25 D 26 A C 28 29 A B 32 33 B 34 A 35 B 36 D 37 B B C D B 38 A 40 39 A B 43 D C 44 C C 46 47 C 48 A B 50 D 42 45 49 C 30 31 41 C 16 A D 27 D 14 A C 21 C 12 D 13 19 B 10 C 15 D B 11 B D B ... S B AD Trang 3/5 Mã đề √ a A √ a B √ C a √ D a 0 0 Câu 40.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D Câu 41 đề sau Z [123 3d-2] Mệnh Z Z sai?... hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A Cả ba mệnh đề B (I) (II) C (I) (III)... (I) (III) D (II) (III) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 B B B D 17 18 A B 20 22 C 23 D 24 A 25 D 26 A C 28 29 A B 32 33 B 34

Ngày đăng: 07/03/2023, 20:57

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w