Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Giá trị của lim x→1 (2x2 − 3x + 1) là A 0 B 1 C +∞ D 2 Câu 2 Tính giới hạn lim x→−∞ √ x2 + 3x + 5 4x − 1 A[.]
Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi Câu Giá trị lim(2x2 − 3x + 1) x→1 A B √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − 1 B A Câu Giá trị lim (3x2 − 2x + 1) x→1 A B +∞ x+1 Câu Tính lim x→+∞ 4x + A B x−3 Câu [1] Tính lim bằng? x→3 x + A B −∞ x2 − 5x + Câu Tính giới hạn lim x→2 x−2 A B x2 − Câu Tính lim x→3 x − A B +∞ − 2n bằng? Câu [1] Tính lim 3n + A B − 4x + bằng? Câu [1] Tính lim x→−∞ x + A B C +∞ D C D − C D C D C +∞ D C −1 D C D −3 C C −1 D D −4 Câu 10 Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ f (x) a = B lim [ f (x) − g(x)] = a − b A lim x→+∞ x→+∞ g(x) b C lim [ f (x)g(x)] = ab D lim [ f (x) + g(x)] = a + b x→+∞ x→+∞ Câu 11 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B < m ≤ C ≤ m ≤ D ≤ m ≤ q Câu 12 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [−1; 0] B m ∈ [0; 4] C m ∈ [0; 1] D m ∈ [0; 2] log(mx) Câu 13 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < ∨ m > B m ≤ C m < D m < ∨ m = Câu 14 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A Vô số B C D Trang 1/5 Mã đề Câu 15 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị " nhỏ! biểu thức P = x + 2y thuộc tập đây? " ! 5 A ;3 B [3; 4) C (1; 2) D 2; 2 Câu 16 [12213d] Có giá trị nguyên m để phương trình nhất? A B 3|x−1| C √ ab = 3m − có nghiệm D − xy = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y √ √ 11 − 18 11 − 29 C Pmin = D Pmin = 21 Câu 17 [12210d] Xét số thực dương x, y thỏa mãn log3 Pmin P = x√+ y 11 + 19 A Pmin = B Pmin √ 11 − 19 = Câu 18 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Câu 19 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C Vô nghiệm D Câu 20 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 13 B log2 2020 C log2 13 D 2020 Câu 21 Tính lim A n+3 B C D Câu 22 Phát biểu sau sai? A lim un = c (Với un = c số) C lim = với k > nk Câu 23 Tính lim A 1 B lim √ = n D lim qn = với |q| > 7n2 − 2n3 + 3n3 + 2n2 + B C Câu 24 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A +∞ B D - un D C −∞ + + ··· + n Câu 25 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + 1 A lim un = B Dãy số un khơng có giới hạn n → +∞ C lim un = D lim un = 2n2 − Câu 26 Tính lim 3n + n4 A B cos n + sin n Câu 27 Tính lim n2 + A −∞ B C D C +∞ D Trang 2/5 Mã đề 12 + 22 + · · · + n2 n3 A B Câu 29 Dãy số sau có giới hạn khác 0? sin n A B n n Câu 28 [3-1133d] Tính lim C +∞ D n+1 n D √ n ! 3n + + a2 − 4a = Tổng phần tử Câu 30 Gọi S tập hợp tham số nguyên a thỏa mãn lim n+2 S A B C D C d = 120◦ Câu 31 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a B 3a C 2a D 4a A [ = 60◦ , S O Câu 32 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a √ Khoảng cách từ O đến (S BC) √ √ 2a 57 a 57 a 57 A B C a 57 D 19 17 19 0 0 Câu 33.√ [2] Cho hình lâp phương √ √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC a a a a B C D A 2 Câu 34 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a A a D B a C Câu 35 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ b a2 + c2 abc b2 + c2 a b2 + c2 c a2 + b2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 36 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab B √ C √ D A √ a + b2 a2 + b2 a2 + b2 a2 + b2 Câu 37 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD √ √ = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ a a B a C D 2a A d = 30◦ , biết S BC tam giác Câu 38 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vuông √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 13 16 26 Câu 39 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng BD S C √ √ √ √ a a a A a B C D Trang 3/5 Mã đề Câu 40 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A a B C D Câu 41 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? f (x)dx = A Nếu Z B Nếu Z g(x)dx f (x) = g(x), ∀x ∈ R f (x)dx = Z f (x)dx = Z g(x)dx f (x) , g(x), ∀x ∈ R g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx C Nếu Câu 42 đề sai? Z Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z A ( f (x) − g(x))dx = f (x)dx − g(x)dx B ( f (x) + g(x))dx = f (x)dx + g(x)dx Z Z Z Z Z C k f (x)dx = f f (x)dx, k ∈ R, k , D f (x)g(x)dx = f (x)dx g(x)dx Câu 43 Trong khẳng định sau, khẳng định sai? A Cả ba đáp án √ B F(x) = x nguyên hàm hàm số f (x) = x C F(x) = x2 nguyên hàm hàm số f (x) = 2x D Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số Câu 44 Trong khẳng định sau, khẳng định sai? A Z F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x u0 (x) dx = log |u(x)| + C B u(x) C Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số D F(x) = − cos x nguyên hàm hàm số f (x) = sin x Câu 45 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) C Với x ∈ (a; b), ta có f (x) = F(x) D Với x ∈ [a; b], ta có F (x) = f (x) Câu 46 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A Cả ba câu sai B F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số C F(x) = G(x) khoảng (a; b) D G(x) = F(x) − C khoảng (a; b), với C số Câu 47 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trang 4/5 Mã đề Trong hai câu A Cả hai câu sai B Chỉ có (I) C Cả hai câu D Chỉ có (II) Câu 48 đề sau sai? Z [1233d-2] Mệnh Z A k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z B [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z C f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z Z D [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Câu 49 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (I) B Cả hai sai C Chỉ có (II) D Cả hai Câu 50 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 A C D D D A B 10 A B 12 A D 13 D 14 15 A 16 A 17 C 19 A 18 C 20 C 21 D 22 23 D 24 25 A 27 C A 11 D B 26 28 B 29 C C D 30 A 32 31 A D 33 C 34 C 35 C 36 C 38 A 37 A 39 B 40 A 42 41 A 43 B 44 45 B 46 47 C 48 A 49 C 50 D B D D ... A B C D - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 A C D D D A B 10 A B 12 A D 13 D 14 15 A 16 A 17 C 19 A 18 C 20 C 21 D 22 23 D 24 25... f (x) tích a với nguyên hàm f (x) Trang 4/5 Mã đề Trong hai câu A Cả hai câu sai B Chỉ có (I) C Cả hai câu D Chỉ có (II) Câu 48 đề sau sai? Z [123 3d-2] Mệnh Z A k f (x)dx = k f (x)dx, với k ∈... (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Câu 19 [122 12d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C Vô nghiệm D Câu 20 [122 21d] Tính tổng tất nghiệm phương trình x+1 = log2