1. Trang chủ
  2. » Tất cả

Đề ôn thpt toán 12 (309)

6 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 113,55 KB

Nội dung

Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Tính giới hạn lim x→2 x2 − 5x + 6 x − 2 A 0 B 5 C 1 D −1 Câu 2 Giá trị của lim x→1 (2x2 − 3x + 1) là A +∞ B[.]

Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi x2 − 5x + Câu Tính giới hạn lim x→2 x−2 A B Câu Giá trị lim(2x2 − 3x + 1) x→1 A +∞ B 2n − Câu Tính lim 2n + 3n + A B √ √ 4n2 + − n + Câu Tính lim 2n − 3 A +∞ B x −1 Câu Tính lim x→1 x − A −∞ B x−2 Câu Tính lim x→+∞ x + A B Câu Dãy !n số sau có giới !n hạn 0? 5 A − B 3 x2 − 12x + 35 Câu Tính lim x→5 25 − 5x A +∞ B Câu Dãy số có giới hạn 0? n3 − 3n A un = B un = n2 − 4n n+1 C D −1 C D C +∞ D −∞ C D C D +∞ C −3 D − !n C e !n D C −∞ D − !n −2 C un = !n D un = Câu 10 Phát biểu sau sai? A lim = n C lim un = c (un = c số) B lim qn = (|q| > 1) D lim k = n Câu 11 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A Vô số B C D log(mx) Câu 12 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m ≤ B m < ∨ m = C m < D m < ∨ m > Câu 13 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 13 B 2020 C log2 2020 D log2 13 Câu 14 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C Vô nghiệm D Trang 1/5 Mã đề Câu 15 [12213d] Có giá trị nguyên m để phương trình nhất? A B C 3|x−1| = 3m − có nghiệm D Câu 16 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Câu 17 [1224d] Tìm tham số thực m để phương trình log3 x + log3 x + m = có nghiệm 1 1 A m > B m ≤ C m ≥ D m < 4 4 √ x Câu 18 [1228d] Cho phương trình (2 log3 x − log3 x − 1) − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 63 B Vô số C 64 D 62 − xy Câu 19 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x√+ y √ √ √ 11 − 11 − 19 11 + 19 18 11 − 29 A Pmin = B Pmin = C Pmin = D Pmin = 9 21 log 2x Câu 20 [1229d] Đạo hàm hàm số y = x2 − ln 2x − log 2x − ln 2x B y0 = C y0 = D y0 = A y0 = 3 2x ln 10 2x ln 10 x x ln 10 2n2 − Câu 21 Tính lim 3n + n4 A B C D Câu 22 Dãy số sau có giới hạn khác 0? n+1 1 sin n A B C √ D n n n n un Câu 23 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A −∞ B C D +∞ n−1 Câu 24 Tính lim n +2 A B C D cos n + sin n Câu 25 Tính lim n2 + A −∞ B +∞ C D Câu 26 Tính lim n+3 A B C D Câu 27 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C D Trang 2/5 Mã đề 12 + 22 + · · · + n2 n3 B +∞ Câu 28 [3-1133d] Tính lim A Câu 29 Phát biểu sau sai? A lim un = c (Với un = c số) C lim √ = n C D B lim qn = với |q| > 1 D lim k = với k > n Câu 30 Trong mệnh đề đây, mệnh đề ! sai? un A Nếu lim un = a > lim = lim = +∞ B Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un C Nếu lim un = a < lim = > với n lim = −∞ ! un D Nếu lim un = a , lim = ±∞ lim = [ = 60◦ , S O Câu 31 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ Khoảng cách từ A đến (S √ BC) √ với mặt đáy S O = a √ a 57 a 57 2a 57 B C D a 57 A 19 19 17 [ = 60◦ , S O Câu 32 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ BC) √ √ Khoảng cách từ O đến (S √ a 57 2a 57 a 57 A a 57 C D B 19 17 19 Câu 33 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A 2a C a B D a √ Câu 34 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ a 38 3a 38 3a 58 3a A B C D 29 29 29 29 Câu 35 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ √ a a B A 2a C D a d = 120◦ Câu 36 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A B 4a C 2a D 3a 0 0 Câu 37.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D 2 d = 30◦ , biết S BC tam giác Câu 38 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a mặt bên (S BC) vng góc với mặt đáy Khoảng cách từ C đến (S AB) Trang 3/5 Mã đề √ √ √ √ a 39 a 39 a 39 a 39 B C D A 13 26 16 Câu 39 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC 1 ab ab B √ C √ D A √ a + b2 a2 + b2 a2 + b2 a2 + b2 Câu 40 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ c a2 + b2 b a2 + c2 abc b2 + c2 a b2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 41 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) − g(x)]dx = A f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z Z C [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z Z k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R D B Câu 42 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (I) B Cả hai C Chỉ có (II) D Cả hai sai Câu 43 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (III) B (I) (II) C Cả ba mệnh đề D (II) (III) Câu 44 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (II) sai B Khơng có câu C Câu (III) sai sai D Câu (I) sai Trang 4/5 Mã đề Câu 45 Trong khẳng định sau, khẳng định sai? A F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x B Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số C Z F(x) = − cos x nguyên hàm hàm số f (x) = sin x u0 (x) dx = log |u(x)| + C D u(x) Câu 46 đề sai? Z Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z A ( f (x) + g(x))dx = f (x)dx + g(x)dx B ( f (x) − g(x))dx = f (x)dx − g(x)dx Z Z Z Z Z C f (x)g(x)dx = f (x)dx g(x)dx D k f (x)dx = f f (x)dx, k ∈ R, k , Câu 47 Mệnh đề sau sai? A Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) !0 Z B f (x)dx = f (x) C F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a;Zb) D Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C Câu 48 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (I) B Cả hai câu sai C Cả hai câu D Chỉ có (II) Câu 49 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có F (x) = f (x), ngồi F (a+ ) = f (a) F (b− ) = f (b) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ (a; b), ta có f (x) = F(x) D Với x ∈ [a; b], ta có F (x) = f (x) Câu 50 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D A D B A D C C B 10 B B 11 D 12 13 D 14 D 15 B 16 A 17 B 18 D 19 A 20 D 21 A 22 A 23 C 24 25 C 26 B 32 33 C 34 35 C 36 A 37 C 38 A B C 40 39 A 41 D D 42 B 44 45 47 D 30 A 31 A 43 B 28 27 A 29 C D C 49 A C B 46 C 48 C 50 C ... D - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D A D B A D C C B 10 B B 11 D 12 13 D 14 D 15 B 16 A 17 B 18 D 19 A 20 D 21 A 22 A 23 C 24... G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (III) B (I) (II) C Cả ba mệnh đề D (II) (III)... nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C D Trang 2/5 Mã đề 12 + 22 + · · · + n2 n3 B +∞ Câu 28 [3-1133d] Tính lim A Câu 29 Phát biểu sau sai? A lim un =

Ngày đăng: 07/03/2023, 20:54

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w