Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Tính giới hạn lim x→−∞ √ x2 + 3x + 5 4x − 1 A 1 4 B 0 C 1 D − 1 4 Câu 2 Tính lim x→2 x + 2 x bằng? A 2 B 0[.]
Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − 1 A B C D − 4 x+2 Câu Tính lim bằng? x→2 x A B C D x−2 Câu Tính lim x→+∞ x + B C D −3 A − Câu Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim+ f (x) = f (a) lim− f (x) = f (b) B lim− f (x) = f (a) lim− f (x) = f (b) x→a x→b x→a x→b C lim− f (x) = f (a) lim+ f (x) = f (b) x→a x→b x→a x→b D lim+ f (x) = f (a) lim+ f (x) = f (b) Câu Giá trị lim (3x2 − 2x + 1) x→1 B +∞ A C D Câu Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B C D 2n + Câu Tính giới hạn lim 3n + 2 B C D A 2 Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ f (x) a A lim [ f (x) − g(x)] = a − b B lim = x→+∞ x→+∞ g(x) b C lim [ f (x)g(x)] = ab D lim [ f (x) + g(x)] = a + b x→+∞ Câu Tính lim A −∞ x→+∞ 2n − + 3n + B 2n2 C +∞ D Câu 10 Phát biểu sau sai? = n D lim un = c (un = c số) q Câu 11 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 4] B m ∈ [0; 1] C m ∈ [−1; 0] D m ∈ [0; 2] √ Câu 12 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A Vô số B 63 C 64 D 62 A lim qn = (|q| > 1) C lim k = n B lim Trang 1/5 Mã đề Câu 13 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C Vô số D − xy = 3xy + x + 2y − Tìm giá trị nhỏ Câu 14 [12210d] Xét số thực dương x, y thỏa mãn log3 x + 2y Pmin P = x√+ y √ √ √ 11 + 19 18 11 − 29 11 − 11 − 19 A Pmin = B Pmin = C Pmin = D Pmin = 21 Câu 15 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 4) B (1; 3; 2) C (2; 4; 3) D (2; 4; 6) Câu 16 [12213d] Có giá trị nguyên m để phương trình nhất? A B C log 2x x2 − log 2x B y0 = C y0 = 3 x 2x ln 10 3|x−1| = 3m − có nghiệm D Câu 17 [1229d] Đạo hàm hàm số y = A y0 = − ln 2x x3 ln 10 D y0 = − ln 2x 2x3 ln 10 Câu 18 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 13 B log2 2020 C 2020 D 13 Câu 19 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m < B m ≥ C m ≤ D m > 4 4 Câu 20 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 + + ··· + n Câu 21 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + A lim un = B lim un = C Dãy số un khơng có giới hạn n → +∞ D lim un = cos n + sin n Câu 22 Tính lim n2 + A B +∞ C D −∞ ! 1 Câu 23 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B C +∞ D 2 ! 1 Câu 24 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B C D Câu 25 Tính lim A 7n2 − 2n3 + 3n3 + 2n2 + B C - D Trang 2/5 Mã đề Câu 26 Tính lim A 2n2 − 3n6 + n4 B Câu 27 Dãy số sau có giới hạn 0? n2 − n2 − 3n A un = B u = n 5n − 3n2 n2 C C un = D − 2n 5n + n2 Câu 28 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A Câu 29 Tính lim A n−1 n2 + B +∞ C −∞ B C Câu 30 Phát biểu sau sai? A lim k = với k > n C lim un = c (Với un = c số) D un = n2 + n + (n + 1)2 un D D B lim qn = với |q| > 1 D lim √ = n Câu 31 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a B C a D A Câu 32 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A B C a D 2 Câu 33 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) a 8a 5a 2a A B C D 9 9 Câu 34 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab 1 ab B √ C D √ A √ a +b a2 + b2 a2 + b2 a2 + b2 [ = 60◦ , S O Câu 35 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a √ Khoảng cách từ A đến (S BC) √ √ 2a 57 a 57 a 57 A B C a 57 D 19 17 19 Câu 36 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC 1 ab ab D √ A √ B √ C a +b a2 + b2 a2 + b2 a2 + b2 [ = 60◦ , S O Câu 37 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a √ Khoảng cách từ O đến (S √ BC) √ 2a 57 a 57 a 57 A B C D a 57 19 17 19 Trang 3/5 Mã đề Câu 38 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ b a2 + c2 a b2 + c2 c a2 + b2 abc b2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 d = 30◦ , biết S BC tam giác Câu 39 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vuông √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 26 13 16 Câu 40 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD √ = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ √ a a B 2a D a A C Câu 41 Mệnh đề sau sai? Z A Nếu F(x) nguyên hàm f (x) (a; b) C số !0 Z B f (x)dx = f (x) f (x)dx = F(x) + C C Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) D F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) Câu 42 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B Câu 43 Hàm số f có nguyên hàm K A f (x) có giá trị nhỏ K C f (x) liên tục K C D B f (x) xác định K D f (x) có giá trị lớn K Câu 44 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ (a; b), ta có f (x) = F(x) C Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) D Với x ∈ [a; b], ta có F (x) = f (x) Câu 45 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z B Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z C Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z D Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Trang 4/5 Mã đề Câu 46 Trong khẳng định sau, khẳng định sai? A F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x B Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số C Z F(x) = − cos x nguyên hàm hàm số f (x) = sin x u0 (x) dx = log |u(x)| + C D u(x) Câu 47 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Khơng có câu B Câu (III) sai sai Câu 48 Z Các khẳng định sau Z sai? f (x)dx = F(x) +C ⇒ !0 Z f (x)dx = f (x) C A C Câu (I) sai f (u)dx = F(u) +C B Z k f (x)dx = k D Câu (II) sai Z f (x)dx, k số Z Z D f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C Câu 49 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) + g(x)]dx = A f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z C k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z D [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R B Câu 50 Trong khẳng định sau, khẳng định sai? A F(x) = x2 nguyên hàm hàm số f (x) = 2x √ B F(x) = x nguyên hàm hàm số f (x) = x C Cả ba đáp án D Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D A A B C C D 14 15 D 16 17 A D D 22 A 24 23 A 25 C 26 27 C 28 A 29 D 30 31 A D B B 32 B 35 A 37 C 34 D 36 D 38 C B 40 A B 41 D 42 B 44 C 45 A 46 47 A 48 A 49 D 20 C 21 43 C 18 A 19 39 D 12 C 13 33 B 10 A B 11 D 50 C C D B ... số f (x) F(x) − G(x) số - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D A A B C C D 14 15 D 16 17 A D D 22 A 24 23 A 25 C 26 27 C 28 A 29 D... 4; 3) D (2; 4; 6) Câu 16 [122 13d] Có giá trị nguyên m để phương trình nhất? A B C log 2x x2 − log 2x B y0 = C y0 = 3 x 2x ln 10 3|x−1| = 3m − có nghiệm D Câu 17 [122 9d] Đạo hàm hàm số y = A... D y0 = − ln 2x 2x3 ln 10 Câu 18 [122 21d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 13 B log2 2020 C 2020 D 13 Câu 19 [122 4d] Tìm tham số thực m để phương