Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Tính lim √ 4n2 + 1 − √ n + 2 2n − 3 bằng A +∞ B 2 C 3 2 D 1 Câu 2 Tính lim x→−∞ x + 1 6x − 2 bằng A 1 B 1 2[.]
Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi √ √ 4n2 + − n + Câu Tính lim 2n − A +∞ B C D x+1 x→−∞ 6x − 1 C D A B Câu Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim− f (x) = f (a) lim− f (x) = f (b) B lim+ f (x) = f (a) lim+ f (x) = f (b) Câu Tính lim x→a x→b x→a x→b C lim+ f (x) = f (a) lim− f (x) = f (b) x→a x→b x→a x→b D lim− f (x) = f (a) lim+ f (x) = f (b) 4x + Câu [1] Tính lim bằng? x→−∞ x + A −4 B −1 C D Câu Dãy số có giới hạn 0? n3 − 3n A un = n2 − 4n B un = n+1 !n C un = !n −2 D un = Câu Phát biểu sau sai? = n D lim k = n A lim qn = (|q| > 1) B lim C lim un = c (un = c số) 2x + x→+∞ x + B −1 Câu Tính giới hạn lim D 2n + Câu Tìm giới hạn lim n+1 A B C D Câu !Dãy số sau có giới !hạn 0? n n A B − 3 !n C e !n D C +∞ D A C Câu 10 Giá trị lim (3x2 − 2x + 1) x→1 A B Câu 11 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 2020 B 2020 C log2 13 D 13 √ x+ 1−x2 √ x+ 1−x2 Câu 12 [12215d] Tìm m để phương trình − 4.2 − 3m + = có nghiệm 3 A < m ≤ B ≤ m ≤ C ≤ m ≤ D m ≥ 4 Câu 13 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x + A xy0 = ey − B xy0 = −ey − C xy0 = −ey + D xy0 = ey + Trang 1/5 Mã đề Câu 14 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 6) B (1; 3; 2) C (2; 4; 3) D (2; 4; 4) Câu 15 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C Vơ nghiệm D log(mx) = có nghiệm thực Câu 16 [1226d] Tìm tham số thực m để phương trình log(x + 1) A m < B m < ∨ m > C m ≤ D m < ∨ m = Câu 17 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B < m ≤ C < m ≤ D ≤ m ≤ Câu 18 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m < B m > C m ≤ D m ≥ Câu 19 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D Câu 20 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b C D A B 2 cos n + sin n Câu 21 Tính lim n2 + A −∞ B +∞ C D Câu 22 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un B Nếu lim un C Nếu lim un D Nếu lim un ! un = −∞ = a < lim = > với n lim ! un = a , lim = ±∞ lim = v! n un = a > lim = lim = +∞ = +∞ lim = a > lim(un ) = +∞ Câu 23 Tính lim 2n2 − 3n6 + n4 Câu 24 Dãy số sau có giới hạn khác 0? n+1 A B n n A B C C D sin n n 1 Câu 25 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B +∞ C 2 ! 1 Câu 26 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B C D √ n ! D D Trang 2/5 Mã đề Câu 27 Tính lim n+3 A B Câu 28 Phát biểu sau sai? A lim √ = n C lim qn = với |q| > n−1 Câu 29 Tính lim n +2 A B C D = với k > nk D lim un = c (Với un = c số) B lim C D un Câu 30 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A B +∞ C D −∞ [ = 60◦ , S O Câu 31 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a √ Khoảng cách từ O đến (S BC) √ √ a 57 a 57 2a 57 A B C a 57 D 19 17 19 √ Câu 32 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 38 a 38 3a 3a 58 A B C D 29 29 29 29 3a Câu 33 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a a 2a B C D A 3 Câu 34 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A 2a B a C D a 0 0 Câu 35 [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab A √ B C √ D √ a +b a2 + b2 a2 + b2 a2 + b2 d = 120◦ Câu 36 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A B 4a C 3a D 2a Câu 37 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab A √ B √ C D √ a +b a2 + b2 a2 + b2 a2 + b2 d = 30◦ , biết S BC tam giác Câu 38 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 26 13 16 Trang 3/5 Mã đề [ = 60◦ , S O Câu 39 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a.√Khoảng cách từ A đến (S BC) √ √ a 57 2a 57 a 57 A B C a 57 D 19 19 17 Câu 40 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a A a B C a D Câu 41 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Khơng có câu B Câu (I) sai sai C Câu (III) sai D Câu (II) sai Câu 42 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có f (x) = F(x) B Với x ∈ (a; b), ta có F (x) = f (x), ngồi F (a+ ) = f (a) F (b− ) = f (b) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ [a; b], ta có F (x) = f (x) Câu 43 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (II) B Chỉ có (I) C Cả hai câu sai D Cả hai câu Câu 44 Mệnh đề sau sai? A F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a;Zb) B Nếu F(x) nguyên hàm f (x) (a; b) C số !0 Z C f (x)dx = f (x) f (x)dx = F(x) + C D Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Câu 45 Hàm số f có nguyên hàm K A f (x) liên tục K C f (x) có giá trị lớn K Câu 46 Z Các khẳng định sau Z sai? A Z C B f (x) có giá trị nhỏ K D f (x) xác định K Z !0 f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C B f (x)dx = f (x) Z Z Z k f (x)dx = k f (x)dx, k số D f (x)dx = F(x) +C ⇒ f (u)dx = F(u) +C Trang 4/5 Mã đề Câu 47 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) + g(x)]dx = A f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z C k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z D [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R B Câu 48 Cho Z hai hàm yZ= f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z B Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z C Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Câu 49 Z Trong khẳng định sau, khẳng định sai? Z 0dx = C, C số A Z C dx = ln |x| + C, C số x xα+1 B x dx = + C, C số α+1 Z D dx = x + C, C số α Câu 50 f (x), g(x) liên đề sai? Z Z Cho hàm số Z Z tục R Trong cácZmệnh đề sau, mệnh Z A f (x)g(x)dx = f (x)dx g(x)dx B ( f (x) + g(x))dx = f (x)dx + g(x)dx Z Z Z Z Z C k f (x)dx = f f (x)dx, k ∈ R, k , D ( f (x) − g(x))dx = f (x)dx − g(x)dx - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 D C D D D A A A B 10 A C 11 12 13 A B 14 A 15 B 16 D 17 B 18 D 20 D 19 A 21 D 22 23 A 24 D 25 C B D 26 C 28 C 29 A 30 C 31 A 32 33 A 34 35 A 36 A 27 D B 37 B 38 39 B 40 B 42 B 41 A 43 D 44 A 46 45 A 47 49 C C 48 50 A B D C ... g(x)dx - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 D C D D D A A A B 10 A C 11 12 13 A B 14 A 15 B 16 D 17 B 18 D 20 D 19 A 21 D 22 23 A 24... Z Z k f (x)dx = k f (x)dx, k số D f (x)dx = F(x) +C ⇒ f (u)dx = F(u) +C Trang 4/5 Mã đề Câu 47 đề sau Z [123 3d-2] Mệnh Z Z sai? [ f (x) + g(x)]dx = A f (x)dx + g(x)dx, với f (x), g(x) liên tục... (1; 3; 2) C (2; 4; 3) D (2; 4; 4) Câu 15 [122 11d] Số nghiệm phương trình 12. 3 x + 3.15 x − x = 20 A B C Vô nghiệm D log(mx) = có nghiệm thực Câu 16 [122 6d] Tìm tham số thực m để phương trình