Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Tính giới hạn lim x→−∞ √ x2 + 3x + 5 4x − 1 A 1 B 1 4 C − 1 4 D 0 Câu 2 Dãy số nào có giới hạn bằng 0? A un[.]
Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi √ x2 + 3x + x→−∞ 4x − 1 A B Câu Dãy số! có giới hạn 0? n −2 A un = B un = n2 − 4n Câu Tính giới hạn lim x2 − 12x + 35 x→5 25 − 5x A −∞ B 2n + Câu Tìm giới hạn lim n+1 A B C − D !n C un = D un = C +∞ D − C D n3 − 3n n+1 Câu Tính lim Câu Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim− f (x) = f (a) lim+ f (x) = f (b) B lim+ f (x) = f (a) lim+ f (x) = f (b) x→a x→b x→a x→b C lim− f (x) = f (a) lim− f (x) = f (b) Câu Tính lim x→+∞ x→a x→b x→a x→b D lim+ f (x) = f (a) lim− f (x) = f (b) x−2 x+3 C −3 D B − Câu Cho f (x) = sin2 x − cos2 x − x Khi f (x) A − sin 2x B −1 + sin x cos x C + sin 2x D −1 + sin 2x x+1 Câu Tính lim x→+∞ 4x + 1 A B C D Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim+ f (x) = lim− f (x) = a B f (x) có giới hạn hữu hạn x → a A x→a x→a x→a x→a C lim+ f (x) = lim− f (x) = +∞ 2−n Câu 10 Giá trị giới hạn lim n+1 A B −1 D lim f (x) = f (a) x→a C D Câu 11 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B Vô số C D Câu 12 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A Vô nghiệm B C log 2x Câu 13 [1229d] Đạo hàm hàm số y = x2 − ln 2x 1 − log 2x A y0 = B y0 = C y0 = 2x ln 10 2x ln 10 x3 D D y0 = − ln 2x x3 ln 10 Trang 1/5 Mã đề 1 Trong khẳng định sau đây, khẳng định đúng? x+1 y y A xy = −e + B xy = e + C xy0 = ey − D xy0 = −ey − 1 − xy Câu 15 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x√+ y √ √ √ 11 − 19 18 11 − 29 11 + 19 11 − A Pmin = B Pmin = C Pmin = D Pmin = 21 Câu 14 [3-12217d] Cho hàm số y = ln √ √ Câu 16 [12215d] Tìm m để phương trình x+ 1−x − 4.2 x+ 1−x − 3m + = có nghiệm 3 C ≤ m ≤ D ≤ m ≤ A m ≥ B < m ≤ 4 Câu 17 [1224d] Tìm tham số thực m để phương trình log3 x + log3 x + m = có nghiệm 1 1 A m < B m ≤ C m ≥ D m > 4 4 2 Câu 18 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a + b + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b B C D A 2 √ Câu 19 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 62 B Vơ số C 63 D 64 q Câu 20 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 1] B m ∈ [0; 4] C m ∈ [0; 2] D m ∈ [−1; 0] ! 3n + 2 Câu 21 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D + + ··· + n Mệnh đề sau đúng? Câu 22 [3-1132d] Cho dãy số (un ) với un = n2 + A Dãy số un giới hạn n → +∞ B lim un = C lim un = D lim un = n−1 Câu 23 Tính lim n +2 A B C D 2n − Câu 24 Tính lim 3n + n4 A B C D Câu 25 Tính lim n+3 A B C D cos n + sin n Câu 26 Tính lim n2 + A +∞ B C −∞ D ! 1 Câu 27 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B C D +∞ 2 2 Trang 2/5 Mã đề Câu 28 Phát biểu sau sai? A lim √ = n B lim un = c (Với un = c số) C lim qn = với |q| > D lim 1 Câu 29 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B = với k > nk ! C D Câu 30 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un B Nếu lim un = a , lim = ±∞ lim = v! n un = +∞ C Nếu lim un = a > lim = lim ! un = −∞ D Nếu lim un = a < lim = > với n lim Câu 31 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 5a a 8a 2a A B C D 9 9 [ = 60◦ , S O Câu 32 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ Khoảng cách từ A đến (S √ BC) √ với mặt đáy S O = a √ a 57 a 57 2a 57 B C D a 57 A 19 17 19 Câu 33 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A B C D a 2 0 0 Câu 34.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D Câu 35 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 1 ab ab A √ B √ C √ D a + b2 a2 + b2 a2 + b2 a2 + b2 d = 30◦ , biết S BC tam giác Câu 36 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 13 16 26 Câu 37 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ b a2 + c2 a b2 + c2 abc b2 + c2 c a2 + b2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Trang 3/5 Mã đề 3a , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a 2a a a B C D A 3 0 0 Câu 39 [3] Cho hình lập phương ABCD.A B C D có cạnh a Khoảng cách hai mặt phẳng (AB0C) (A0C D) √ √ √ √ 2a a a A a B C D 2 √ Câu 40 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ a 38 3a 3a 38 3a 58 B C D A 29 29 29 29 Câu 41 Hàm số f có nguyên hàm K A f (x) có giá trị nhỏ K B f (x) liên tục K C f (x) có giá trị lớn K D f (x) xác định K Câu 38 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = Câu 42 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 43 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (I) B Chỉ có (II) C Cả hai câu D Cả hai câu sai Câu 44 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (I) B Chỉ có (II) C Cả hai D Cả hai sai Câu 45 Z Trong cácα+1khẳng định sau, khẳng định sai? Z x A xα dx = + C, C số B dx = ln |x| + C, C số α+1 Z Z x C 0dx = C, C số D dx = x + C, C số Trang 4/5 Mã đề Câu 46 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) C Với x ∈ (a; b), ta có f (x) = F(x) D Với x ∈ [a; b], ta có F (x) = f (x) Câu 47 Cho hai hàm y = f (x), y = g(x) Z có đạo hàm Z R Phát biểu sau đúng? A Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z B Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z C Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Câu 48 f (x), g(x) liên đề sai? Z Z Cho hàm số Z Z tục R Trong cácZmệnh đề sau, mệnh Z A f (x)g(x)dx = f (x)dx g(x)dx B ( f (x) − g(x))dx = f (x)dx − g(x)dx Z Z Z Z Z C ( f (x) + g(x))dx = f (x)dx + g(x)dx D k f (x)dx = f f (x)dx, k ∈ R, k , Câu 49 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (III) sai B Câu (I) sai C Câu (II) sai D Không có câu sai Câu 50 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A Cả ba mệnh đề B (II) (III) C (I) (II) D (I) (III) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 A C B C D D B D 10 B 11 D 12 13 D 14 15 D 16 17 C C D C 33 B C 30 C B 36 A 38 B D C 40 A B 42 A C 45 A 49 D 28 34 C 39 47 C 32 A D 35 43 26 B 31 D 24 29 41 D 22 B 25 37 C 20 21 27 D 18 A B 19 A 23 D 44 B 46 B 48 A C D 50 C ... (III) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 A C B C D D B D 10 B 11 D 12 13 D 14 15 D 16 17 C C D C 33 B C 30 C B 36 A 38 B D C 40... hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A Cả ba mệnh đề B (II) (III) C (I) (II)... Pmin = 21 Câu 14 [3 -122 17d] Cho hàm số y = ln √ √ Câu 16 [122 15d] Tìm m để phương trình x+ 1−x − 4.2 x+ 1−x − 3m + = có nghiệm 3 C ≤ m ≤ D ≤ m ≤ A m ≥ B < m ≤ 4 Câu 17 [122 4d] Tìm tham số thực