Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Giá trị của lim x→1 (3x2 − 2x + 1) A 3 B 2 C +∞ D 1 Câu 2 [1] Tính lim x→3 x − 3 x + 3 bằng? A 0 B +∞ C 1 D[.]
Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi Câu Giá trị lim (3x2 − 2x + 1) x→1 A B x−3 bằng? x→3 x + B +∞ − 2n [1] Tính lim bằng? 3n + 1 B 2n + Tính giới hạn lim 3n + 2 B x+1 Tính lim x→+∞ 4x + B C +∞ D C D −∞ C D − C D C D Câu [1] Tính lim A Câu A Câu A Câu A Câu Giá trị lim(2x2 − 3x + 1) x→1 A B 4x + Câu [1] Tính lim bằng? x→−∞ x + A −4 B x+2 Câu Tính lim bằng? x→2 x A B C D +∞ C −1 D C D Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 D Nếu hàm số có đạo hàm x0 hàm số liên tục điểm 2−n Câu 10 Giá trị giới hạn lim n+1 A B C D −1 Câu 11 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B < m ≤ C ≤ m ≤ D < m ≤ log(mx) Câu 12 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < ∨ m = B m ≤ C m < ∨ m > D m < Câu 13 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≤ B m ≥ C m > D m < Câu 14 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C D Vô nghiệm Trang 1/5 Mã đề Câu 15 [12213d] Có giá trị nguyên m để phương trình nhất? A B 1 3|x−1| C = 3m − có nghiệm D Câu 16 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 2020 B log2 13 C 13 D log2 2020 log 2x Câu 17 [1229d] Đạo hàm hàm số y = x2 − ln 2x 1 − log 2x 0 A y0 = B y = C y = 2x3 ln 10 2x3 ln 10 x3 D y0 = − ln 2x x3 ln 10 √ Câu 18 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị nhỏ biểu thức P" = x!+ 2y thuộc tập " đây? ! 5 A (1; 2) B ;3 C 2; D [3; 4) 2 q Câu 19 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 4] B m ∈ [0; 2] C m ∈ [−1; 0] D m ∈ [0; 1] Câu 20 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (1; 3; 2) B (2; 4; 3) C (2; 4; 6) D (2; 4; 4) ! 1 Câu 21 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n B C +∞ D A 2 Câu 22 Phát biểu sau sai? A lim un = c (Với un = c số) B lim √ = n C lim qn = với |q| > D lim k = với k > n 7n − 2n + Câu 23 Tính lim 3n + 2n2 + A B C D - 3 n−1 Câu 24 Tính lim n +2 A B C D Câu 25 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A Câu 26 Tính lim A B cos n + sin n n2 + B C C −∞ D D +∞ Trang 2/5 Mã đề Câu 27 Trong mệnh đề đây, mệnh đề nào!sai? un = A Nếu lim un = a , lim = ±∞ lim ! un B Nếu lim un = a < lim = > với n lim = −∞ C Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un = +∞ D Nếu lim un = a > lim = lim Câu 28 Dãy số sau có giới hạn 0? − 2n n2 + n + B un = A un = (n + 1) 5n + n2 12 + 22 + · · · + n2 n3 B C un = n2 − 3n n2 D un = n2 − 5n − 3n2 Câu 29 [3-1133d] Tính lim A +∞ C Câu 30 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A +∞ B C −∞ D un D 3a , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a a 2a A B C D 3 Câu 32 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a C a A a B D Câu 33 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B C a D √ Câu 34 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 3a 58 a 38 3a 38 A B C D 29 29 29 29 Câu 35 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a B a C D a A 2a Câu 36 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ √ a a A a B C 2a D [ = 60◦ , S O Câu 37 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a Khoảng cách từ A đến (S BC) Câu 31 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = Trang 3/5 Mã đề √ √ √ 2a 57 a 57 a 57 B C D 19 19 17 Câu 38 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 1 ab ab A √ B √ C D √ 2 2 a +b a +b a +b a2 + b2 √ A a 57 [ = 60◦ , S O Câu 39 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a √ Khoảng cách từ O đến (S BC) √ √ a 57 a 57 2a 57 A B C a 57 D 19 17 19 Câu 40 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A B C D a 2 Câu 41 Cho Z hai hàm yZ= f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? f (x)dx = A Nếu Z B Nếu Z g0 (x)dx f (x) = g(x), ∀x ∈ R f (x)dx = Z f (x)dx = Z g(x)dx f (x) , g(x), ∀x ∈ R g(x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx C Nếu Câu 42 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z B k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z C [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z D f (x)dx = f (x) + C, với f (x) có đạo hàm R A Z Câu 43 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (I) sai B Câu (III) sai C Khơng có câu D Câu (II) sai sai Câu 44 Trong khẳng định sau, khẳng định sai? A Cả ba đáp án √ B F(x) = x nguyên hàm hàm số f (x) = x C F(x) = x2 nguyên hàm hàm số f (x) = 2x D Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số Câu 45 Xét hai câu sau Trang 4/5 Mã đề Z (I) ( f (x) + g(x))dx = Z f (x)dx + Z g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (II) B Chỉ có (I) C Cả hai câu sai D Cả hai câu Câu 46 f (x), g(x) liên đề sai? Z Z Cho hàm số Z Z tục R Trong cácZmệnh đề sau, mệnh Z A f (x)g(x)dx = f (x)dx g(x)dx B ( f (x) + g(x))dx = f (x)dx + g(x)dx Z Z Z Z Z C ( f (x) − g(x))dx = f (x)dx − g(x)dx D k f (x)dx = f f (x)dx, k ∈ R, k , Câu 47 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (II) (III) B (I) (III) C (I) (II) D Cả ba mệnh đề Câu 48 !0 sau sai? Z Mệnh đề A f (x)dx = f (x) B Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) C F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a;Zb) D Nếu F(x) nguyên hàm f (x) (a; b) C số Câu 49 Z Trong khẳng định sau, khẳng định sai? Z 0dx = C, C số A Z C B dx = ln |x| + C, C số x Z D xα dx = f (x)dx = F(x) + C xα+1 + C, C số α+1 dx = x + C, C số Câu 50 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A G(x) = F(x) − C khoảng (a; b), với C số B F(x) = G(x) khoảng (a; b) C Cả ba câu sai D F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A B D D B D B C D 10 D 11 B 12 A 13 B 14 B 15 B 16 B 18 B 17 D 19 C 20 C C 21 D 22 23 D 24 B 26 B 25 B 27 D 28 B 29 D 30 B 31 D 32 33 A D 34 B B 35 B 36 37 B 38 D 40 D 39 A 41 C 42 B 43 C 44 B 45 D 47 49 46 A 48 C 50 A B C ... số - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A B D D B D B C D 10 D 11 B 12 A 13 B 14 B 15 B 16 B 18 B 17 D 19 C 20 C C 21 D 22 23 D... mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (II) (III) B (I) (III) C (I) (II) D Cả ba mệnh đề Câu... +∞ |q| > A Câu 26 Tính lim A B cos n + sin n n2 + B C C −∞ D D +∞ Trang 2/5 Mã đề Câu 27 Trong mệnh đề đây, mệnh đề nào!sai? un = A Nếu lim un = a , lim = ±∞ lim ! un B Nếu lim un = a < lim =