1. Trang chủ
  2. » Tất cả

Đề ôn thpt toán 12 (145)

6 3 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 114,27 KB

Nội dung

Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu A lim x→a+ f (x) = lim x→a−.

Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim+ f (x) = lim− f (x) = a B f (x) có giới hạn hữu hạn x → a x→a x→a C lim f (x) = f (a) x→a D lim+ f (x) = lim− f (x) = +∞ x→a x→a Câu Tính lim x→3 x −9 x−3 B +∞ x2 − 5x + Câu Tính giới hạn lim x→2 x−2 A B −1 A −3 Câu Dãy số !n có giới hạn 0? B un = n2 − 4n A un = 2n − Câu Tính lim 2n + 3n + A B −∞ 4x + Câu [1] Tính lim bằng? x→−∞ x + A −1 B − 2n bằng? Câu [1] Tính lim 3n + A B − 2n + Câu Tìm giới hạn lim n+1 A B x−3 Câu [1] Tính lim bằng? x→3 x + A B −∞ x − 12x + 35 Câu 10 Tính lim x→5 25 − 5x A − B +∞ C D C D n3 − 3n C un = n+1 !n −2 D un = C D +∞ C −4 D C D C D C +∞ D C −∞ D √ Câu 11 [1228d] Cho phương trình (2 log3 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 64 B 63 C Vơ số D 62 Câu 12 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m < B m ≥ C m ≤ D m > Câu 13 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B ≤ m ≤ C ≤ m ≤ D < m ≤ Câu 14 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B Vô số C D Trang 1/5 Mã đề 1 Trong khẳng định sau đây, khẳng định đúng? x+1 y B xy = e − C xy0 = −ey − D xy0 = ey + Câu 15 [3-12217d] Cho hàm số y = ln A xy0 = −ey + Câu 16 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 x Câu 17 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 +3)−log2 (2020−21−x ) A log2 2020 B 13 C log2 13 D 2020 log 2x Câu 18 [1229d] Đạo hàm hàm số y = x2 − ln 2x 1 − log 2x − ln 2x A y0 = B y0 = C y0 = D y0 = 3 x x ln 10 2x ln 10 2x ln 10 − xy Câu 19 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x + √ √ √ √ y 11 − 19 11 + 19 11 − 18 11 − 29 B Pmin = C Pmin = D Pmin = A Pmin = 21 9 q Câu 20 [12216d] Tìm tất giá trị thực tham số m để phương trình log23 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 2] B m ∈ [0; 4] C m ∈ [−1; 0] D m ∈ [0; 1] Câu 21 Dãy số sau có giới hạn 0? n2 − 3n n2 + n + A un = B u = n (n + 1)2 n2 C un = − 2n 5n + n2 D un = n2 − 5n − 3n2 Câu 22 Phát biểu sau sai? = với k > nk D lim un = c (Với un = c số) A lim qn = với |q| > 1 C lim √ = n B lim Câu 23 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un B Nếu lim un C Nếu lim un D Nếu lim un ! un = a < lim = > với n lim = −∞ ! un = a > lim = lim = +∞ ! un = = a , lim = ±∞ lim = +∞ lim = a > lim(un ) = +∞ Câu 24 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B n−1 Câu 25 Tính lim n +2 A B C C D D Trang 2/5 Mã đề Câu 26 Tính lim A Câu 27 Tính lim A Câu 28 Tính lim A cos n + sin n n2 + B 2n2 − 3n6 + n4 B D −∞ C D 7n2 − 2n3 + 3n3 + 2n2 + B Câu 29 [3-1133d] Tính lim A C +∞ C D - 12 + 22 + · · · + n2 n3 B +∞ Câu 30 Dãy số sau có giới hạn khác 0? n+1 A B n n C C sin n n D D √ n 0 0 Câu 31.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D 2 Câu 32 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ √ a a C a B D A 2a [ = 60◦ , S O Câu 33 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ Khoảng cách từ O đến (S√BC) √ với mặt đáy S O = a √ a 57 a 57 2a 57 B C D a 57 A 17 19 19 Câu 34 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √ √ a a A B a C a D [ = 60◦ , S O Câu 35 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a √ Khoảng cách từ A đến (S BC) √ √ 2a 57 a 57 a 57 A B C a 57 D 19 19 17 d = 120◦ Câu 36 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a C 4a D 3a A 2a B Câu 37 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A a B C D 2 Trang 3/5 Mã đề 3a , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a a 2a A B C D 3 Câu 39 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ a a 2a A B a C D Câu 40 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 2a a 5a 8a A B C D 9 9 Câu 41 [1232d-2] Trong khẳng định đây, có khẳng định đúng? Câu 38 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C Câu 42 Z Trong khẳng định sau, khẳng định sai? Z 0dx = C, C số A Z C dx = ln |x| + C, C số x B Z D D xα dx = xα+1 + C, C số α+1 dx = x + C, C số Câu 43 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (III) B (I) (II) C Cả ba mệnh đề D (II) (III) Câu 44 đề sai? Z Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z A ( f (x) + g(x))dx = f (x)dx + g(x)dx B ( f (x) − g(x))dx = f (x)dx − g(x)dx Z Z Z Z Z C k f (x)dx = f f (x)dx, k ∈ R, k , D f (x)g(x)dx = f (x)dx g(x)dx Câu 45 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trang 4/5 Mã đề Trong hai khẳng định A Chỉ có (II) B Chỉ có (I) C Cả hai sai D Cả hai Câu 46 Trong khẳng định sau, khẳng định sai? A Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Z u0 (x) dx = log |u(x)| + C B u(x) C F(x) = − cos x nguyên hàm hàm số f (x) = sin x D F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x Câu 47 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) − g(x)]dx = A f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z C k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z D [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R B Câu 48 !0 sau sai? Z Mệnh đề A f (x)dx = f (x) B F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) C Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Z D Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C Câu 49 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có f (x) = F(x) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) Câu 50 Z Các khẳng định Z sau sai? A Z C k f (x)dx = k f (x)dx, k số !0 f (x)dx = f (x) Z B Z D f (x)dx = F(x) +C ⇒ Z f (u)dx = F(u) +C f (x)dx = F(x) + C ⇒ Z f (t)dt = F(t) + C - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 C B A B D D D D D 10 11 D 12 13 A 15 16 A B C 19 18 D 21 C 26 27 D 28 29 D 30 A B 37 A 38 D B D 40 A C 41 D 42 B 44 B 45 A 49 D 34 A 36 47 B 32 C 35 A 43 D 24 D 39 C 22 A B 31 B 20 25 33 B 14 A 17 23 C C D D 46 B 48 B 50 B ... + C - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 C B A B D D D D D 10 11 D 12 13 A 15 16 A B C 19 18 D 21 C 26 27 D 28 29 D 30 A B 37 A... G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (III) B (I) (II) C Cả ba mệnh đề D (II) (III)... Câu 15 [3 -122 17d] Cho hàm số y = ln A xy0 = −ey + Câu 16 [122 18d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 x Câu 17 [122 21d] Tính

Ngày đăng: 07/03/2023, 15:04

w