Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Tính lim x→+∞ x + 1 4x + 3 bằng A 1 4 B 1 3 C 1 D 3 Câu 2 Cho f (x) = sin2 x − cos2 x − x Khi đó f ′(x) bằn.
Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi x+1 x→+∞ 4x + B Câu Tính lim A C Câu Cho f (x) = sin2 x − cos2 x − x Khi f (x) A − sin 2x B + sin 2x C −1 + sin x cos x 2n + Câu Tính giới hạn lim 3n + 2 A B C − n2 bằng? Câu [1] Tính lim 2n + 1 A B − 2 D D −1 + sin 2x D D C D C Câu Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 C Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm x0 hàm số liên tục điểm Câu Tính lim A +∞ 2n − 2n2 + 3n + B Câu !Dãy số sau có giới !n hạn 0? n A B e C −∞ D !n C !n D − Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ A lim [ f (x) + g(x)] = a + b x→+∞ C lim [ f (x)g(x)] = ab x→+∞ Câu 10 [1] Tính lim − 2n bằng? 3n + B − x→+∞ f (x) a = x→+∞ g(x) b D lim [ f (x) − g(x)] = a − b B lim x→+∞ D 3 √ Câu 11 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 63 B 64 C Vô số D 62 log 2x Câu 12 [1229d] Đạo hàm hàm số y = x2 − ln 2x 1 − log 2x − ln 2x A y0 = B y0 = C y0 = D y0 = x ln 10 2x ln 10 x 2x3 ln 10 A C Trang 1/5 Mã đề Câu 13 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 6) B (2; 4; 4) C (2; 4; 3) D (1; 3; 2) Trong khẳng định sau đây, khẳng định đúng? Câu 14 [3-12217d] Cho hàm số y = ln x+1 y y A xy = −e − B xy = e + C xy0 = −ey + D xy0 = ey − 1 Câu 15 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D Câu 16 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B < m ≤ C ≤ m ≤ D ≤ m ≤ Câu 17 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 2020 B log2 13 C 13 D 2020 √ Câu 18 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị nhỏ biểu thức P" = x!+ 2y thuộc tập đây? " ! 5 ;3 C [3; 4) D 2; A (1; 2) B 2 √ √ Câu 19 [12215d] Tìm m để phương trình x+ 1−x − 4.2 x+ 1−x − 3m + = có nghiệm A < m ≤ B ≤ m ≤ C ≤ m ≤ D m ≥ 4 Câu 20 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m > B m ≤ C m < D m ≥ 2 + + ··· + n Câu 21 [3-1133d] Tính lim n3 B C D +∞ A 3 + + ··· + n Câu 22 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + A lim un = B Dãy số un khơng có giới hạn n → +∞ D lim un = C lim un = 2n2 − Câu 23 Tính lim 3n + n4 A B C D Câu 24 Tính lim n+3 A B C D 7n − 2n + Câu 25 Tính lim 3n + 2n2 + A - B C D 3 Câu 26 Trong khẳng định có khẳng định đúng? 2 (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < Trang 2/5 Mã đề (III) lim qn = +∞ |q| > A Câu 27 Tính lim A +∞ B cos n + sin n n2 + B C C −∞ D D Câu 28 Phát biểu sau sai? A lim k = với k > n C lim qn = với |q| > 1 B lim √ = n D lim un = c (Với un = c số) un Câu 29 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A B +∞ C D −∞ n−1 Câu 30 Tính lim n +2 A B C D d = 30◦ , biết S BC tam giác Câu 31 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 B C D A 16 26 13 Câu 32 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ b a2 + c2 abc b2 + c2 a b2 + c2 c a2 + b2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 33 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 1 ab ab A √ B √ C D √ a +b a2 + b2 a2 + b2 a2 + b2 √ Câu 34 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 38 3a 58 a 38 3a A B C D 29 29 29 29 [ = 60◦ , S O Câu 35 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ Khoảng cách từ A đến (S√BC) √ √ a 57 2a 57 a 57 A a 57 B C D 17 19 19 Câu 36 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A a B 2a C a D Câu 37 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a A a B a C D Câu 38 [2] Cho hình chóp S ABCD có đáy hình vuông cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng BD S C √ √ √ √ a a a A a B C D Trang 3/5 Mã đề Câu 39 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A B C a D 2 d = 120◦ Câu 40 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a D 2a A 4a B 3a C Câu 41 Trong khẳng định sau, khẳng định sai? A Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số B F(x) = x2 nguyên hàm hàm số f (x) = 2x C Cả ba đáp án √ D F(x) = x nguyên hàm hàm số f (x) = x Câu 42 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (I) B Cả hai C Chỉ có (II) D Cả hai sai Câu 43 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (I) B Chỉ có (II) C Cả hai câu D Cả hai câu sai Câu 44 khẳng định sau, khẳng định sai? Z Trong u0 (x) A dx = log |u(x)| + C u(x) B Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số C F(x) = − cos x nguyên hàm hàm số f (x) = sin x D F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x Câu 45 đề sai? Z Z Cho hàm sốZf (x), g(x) liên tục R Trong cácZmệnh đề sau, mệnh Z A k f (x)dx = f f (x)dx, k ∈ R, k , B ( f (x) − g(x))dx = f (x)dx − g(x)dx Z Z Z Z Z Z C f (x)g(x)dx = f (x)dx g(x)dx D ( f (x) + g(x))dx = f (x)dx + g(x)dx Câu 46 Z Các khẳng định sau Z sai? A Z C f (x)dx = F(x) + C ⇒ !0 f (x)dx = f (x) f (t)dt = F(t) + C B Z Z D k f (x)dx = k Z f (x)dx, k số Z f (x)dx = F(x) +C ⇒ f (u)dx = F(u) +C Câu 47 [1232d-2] Trong khẳng định đây, có khẳng định đúng? Trang 4/5 Mã đề (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 48 Mệnh đề sau sai? A F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a;Zb) B Nếu F(x) nguyên hàm f (x) (a; b) C số !0 Z C f (x)dx = f (x) f (x)dx = F(x) + C D Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Câu 49 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (I) sai B Câu (II) sai C Khơng có câu D Câu (III) sai sai Câu 50 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) − g(x)]dx = A Z B Z C Z D g(x)dx, với f (x), g(x) liên tục R f (x)dx − Z Z [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R f (x)dx = f (x) + C, với f (x) có đạo hàm R - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi A B D 10 D 14 15 A 16 A 19 B 18 21 A D 25 A 29 D B D C D 22 C 24 C 26 27 B 20 C 23 C 12 A 13 A 17 D B 11 B C D B 28 C 30 C C 31 D 32 33 D 34 B 35 C 36 C 37 C 38 C 39 C 40 C 42 C 41 D 43 C 44 A 45 C 46 47 C 48 A 49 C 50 D C ... HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi A B D 10 D 14 15 A 16 A 19 B 18 21 A D 25 A 29 D B D C D 22 C 24 C 26 27 B 20 C 23 C 12 A 13 A 17 D B 11 B C D B 28 C... Hai nguyên hàm D hàm số sai khác hàm số A Câu (I) sai B Câu (II) sai C Không có câu D Câu (III) sai sai Câu 50 đề sau Z [123 3d-2] Mệnh Z Z sai? [ f (x) − g(x)]dx = A Z B Z C Z D g(x)dx, với f (x),... 14 [3 -122 17d] Cho hàm số y = ln x+1 y y A xy = −e − B xy = e + C xy0 = −ey + D xy0 = ey − 1 Câu 15 [122 13d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D Câu 16 [122 14d]