Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Tính lim 2n − 3 2n2 + 3n + 1 bằng A +∞ B 1 C 0 D −∞ Câu 2 Giả sử ta có lim x→+∞ f (x) = a và lim x→+∞ f (x).
Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi 2n − Câu Tính lim 2n + 3n + A +∞ B C D −∞ Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ f (x) a A lim = B lim [ f (x) + g(x)] = a + b x→+∞ g(x) x→+∞ b C lim [ f (x)g(x)] = ab D lim [ f (x) − g(x)] = a − b x→+∞ x→+∞ Câu Phát biểu sau sai? A lim k = n C lim qn = (|q| > 1) Câu Tính lim x→5 A +∞ x2 − 12x + 35 25 − 5x B −∞ = n D lim un = c (un = c số) B lim C − D C D Câu Giá trị lim (3x2 − 2x + 1) A +∞ x→1 B Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 D Nếu hàm số có đạo hàm x0 hàm số liên tục điểm √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − 1 A B − C 4 x−2 Câu Tính lim x→+∞ x + A B −3 C − D D Câu Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B Câu 10 Dãy! số có giới hạn 0? n n3 − 3n A un = B un = n+1 C D !n −2 C un = D un = n2 − 4n log 2x Câu 11 [1229d] Đạo hàm hàm số y = x2 1 − log 2x − ln 2x − ln 2x A y0 = B y0 = C y0 = D y0 = 2x ln 10 x x ln 10 2x3 ln 10 Câu 12 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≤ B m > C m < D m ≥ Trang 1/5 Mã đề √ Câu 13 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 63 B 64 C Vô số D 62 − xy = 3xy + x + 2y − Tìm giá trị nhỏ Câu 14 [12210d] Xét số thực dương x, y thỏa mãn log3 x + 2y Pmin P = x√+ y √ √ √ 11 − 19 11 + 19 11 − 18 11 − 29 A Pmin = B Pmin = C Pmin = D Pmin = 9 21 √ Câu 15 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị " nhỏ! biểu thức P = x + 2y thuộc tập đây? " ! 5 A 2; B [3; 4) C (1; 2) D ;3 2 Trong khẳng định sau đây, khẳng định đúng? x+1 y B xy = −e − C xy0 = −ey + D xy0 = ey + Câu 16 [3-12217d] Cho hàm số y = ln A xy0 = ey − Câu 17 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A Vô số B C D √ Câu 18 [12215d] Tìm m để phương trình x+ 3 B < m ≤ A ≤ m ≤ 4 1−x2 √ − 4.2 x+ 1−x2 C m ≥ − 3m + = có nghiệm D ≤ m ≤ Câu 19 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Câu 20 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m ≤ B m ≥ C m > D m < 4 4 un Câu 21 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A −∞ B C +∞ D + + ··· + n Câu 22 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + 1 A lim un = B Dãy số un khơng có giới hạn n → +∞ C lim un = D lim un = 12 + 22 + · · · + n2 Câu 23 [3-1133d] Tính lim n3 A B +∞ 7n2 − 2n3 + Câu 24 Tính lim 3n + 2n2 + A B C D D - ! 3n + Câu 25 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a2 − 4a = Tổng phần tử n+2 S A B C D C Trang 2/5 Mã đề Câu 26 Tính lim A 2n2 − 3n6 + n4 B Câu 27 Tính lim A −∞ cos n + sin n n2 + B +∞ D C D C Câu 28 Trong mệnh đề đây, mệnh đề nào!sai? un A Nếu lim un = a , lim = ±∞ lim = ! un = −∞ B Nếu lim un = a < lim = > với n lim C Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un D Nếu lim un = a > lim = lim = +∞ Câu 29 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C D Câu 30 Phát biểu sau sai? A lim un = c (Với un = c số) C lim √ = n = với k > nk D lim qn = với |q| > B lim Câu 31 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a B C D a A d = 30◦ , biết S BC tam giác Câu 32 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vuông √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 13 26 16 0 0 Câu 33.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D Câu 34 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a B a C 2a D a A Câu 35 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC 1 ab ab A √ B √ C √ D a + b2 a2 + b2 a2 + b2 a2 + b2 Trang 3/5 Mã đề Câu 36 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD √ √ = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ a a B a C 2a D A Câu 37 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B a D C Câu 38 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường√thẳng BD0 √ √ √ a b2 + c2 c a2 + b2 b a2 + c2 abc b2 + c2 B √ C √ D √ A √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 d = 120◦ Câu 39 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a C 3a D 4a A 2a B 3a Câu 40 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a a 2a A B C D 3 Câu 41 f (x), g(x) liên Z Cho hàm số Z Z tục R Trong cácZmệnh đề sau, mệnh Z đề sai? f (x)g(x)dx = A Z C f (x)dx g(x)dx Z Z ( f (x) − g(x))dx = f (x)dx − g(x)dx k f (x)dx = f B Z D f (x)dx, k ∈ R, k , Z Z ( f (x) + g(x))dx = f (x)dx + g(x)dx Câu 42 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 43 !0 sau sai? Z Mệnh đề A f (x)dx = f (x) Z B Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C C Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) D F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) Câu 44 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) Trang 4/5 Mã đề (II) Nếu f liên tục D f có nguyên hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Khơng có câu B Câu (I) sai C Câu (II) sai D Câu (III) sai sai Câu 45 Cho Z hai hàm yZ= f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? f (x)dx = A Nếu Z B Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z g(x)dx f (x) , g(x), ∀x ∈ R Z Z C Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z D Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Câu 46 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số B Cả ba câu sai C G(x) = F(x) − C khoảng (a; b), với C số D F(x) = G(x) khoảng (a; b) Câu 47 Z [1233d-2] Mệnh đề sau sai? f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z B k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z C [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z Z Z D [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R A Câu 48 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (II) (III) B (I) (II) C (I) (III) D Cả ba mệnh đề Câu 49 Trong khẳng định sau, khẳng định sai? A Cả ba đáp án B F(x) = x2 nguyên hàm hàm số f (x) = 2x C Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số √ D F(x) = x nguyên hàm hàm số f (x) = x Câu 50 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ (a; b), ta có F (x) = f (x), ngồi F (a+ ) = f (a) F (b− ) = f (b) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ (a; b), ta có f (x) = F(x) - - - - - - - - - - HẾT- - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 C A C D C D B B A 10 13 D 14 15 D 16 A 17 B 19 C 18 A C 21 20 A D 22 A D 24 23 A 25 D 12 C 11 C B 26 A 27 D 28 D 29 D 30 D 31 D 32 A 33 34 B 35 C 36 A 37 C 38 39 D 42 A 43 D 44 A 45 D 46 49 B 40 B 41 A 47 D B D C 48 B 50 B ... HẾT- - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 C A C D C D B B A 10 13 D 14 15 D 16 A 17 B 19 C 18 A C 21 20 A D 22 A D 24 23 A 25 D 12 C 11 C B 26 A 27 D 28 D 29 D... phần tử n+2 S A B C D C Trang 2/5 Mã đề Câu 26 Tính lim A 2n2 − 3n6 + n4 B Câu 27 Tính lim A −∞ cos n + sin n n2 + B +∞ D C D C Câu 28 Trong mệnh đề đây, mệnh đề nào!sai? un A Nếu lim un = a ,... cácZmệnh đề sau, mệnh Z đề sai? f (x)g(x)dx = A Z C f (x)dx g(x)dx Z Z ( f (x) − g(x))dx = f (x)dx − g(x)dx k f (x)dx = f B Z D f (x)dx, k ∈ R, k , Z Z ( f (x) + g(x))dx = f (x)dx + g(x)dx Câu 42 [123 2d-2]