Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Phát biểu nào sau đây là sai? A lim qn = 0 (|q| > 1) B lim un = c (un = c là hằng số) C lim 1 n = 0 D lim 1.
Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi Câu Phát biểu sau sai? A lim qn = (|q| > 1) B lim un = c (un = c số) 1 C lim = D lim k = n n Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 C Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm x3 − Câu Tính lim x→1 x − A B +∞ C D −∞ x − 5x + Câu Tính giới hạn lim x→2 x−2 A B C −1 D √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − 1 C − D A B 4 2n + Câu Tìm giới hạn lim n+1 A B C D x+1 Câu Tính lim x→−∞ 6x − 1 A B C D 2 Câu Cho f (x) = sin x − cos x − x Khi f (x) A −1 + sin x cos x B −1 + sin 2x C − sin 2x D + sin 2x x2 − 12x + 35 Câu Tính lim x→5 25 − 5x 2 A − B C +∞ D −∞ 5 2n + Câu 10 Tính giới hạn lim 3n + A B C D 2 log(mx) Câu 11 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < ∨ m > B m < C m < ∨ m = D m ≤ Câu 12 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 3) B (1; 3; 2) C (2; 4; 6) D (2; 4; 4) Câu 13 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D Trang 1/5 Mã đề Câu 14 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị nhỏ biểu thức P = x + 2y thuộc tập " đây? ! " ! 5 A (1; 2) B [3; 4) C ;3 D 2; 2 √ ab Câu 15 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m > B m ≥ C m ≤ D m < 4 4 Câu 16 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B < m ≤ C ≤ m ≤ D < m ≤ Câu 17 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C Vô nghiệm log 2x Câu 18 [1229d] Đạo hàm hàm số y = x2 − ln 2x − log 2x − ln 2x A y0 = B y0 = C y0 = x ln 10 x 2x3 ln 10 √ √ D D y0 = 2x3 ln 10 Câu 19 [12215d] Tìm m để phương trình x+ 1−x − 4.2 x+ 1−x − 3m + = có nghiệm 3 B ≤ m ≤ C < m ≤ D m ≥ A ≤ m ≤ 4 Câu 20 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Câu 21 Trong mệnh đề đây, mệnh đề ! sai? un A Nếu lim un = a > lim = lim = +∞ B Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un C Nếu lim un = a , lim = ±∞ lim = ! un = −∞ D Nếu lim un = a < lim = > với n lim Câu 22 Tính lim n+3 A B C D + + ··· + n Câu 23 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + 1 A lim un = B lim un = C Dãy số un khơng có giới hạn n → +∞ D lim un = ! 1 Câu 24 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B +∞ C D 2 Câu 25 Dãy số sau có giới hạn khác 0? 1 sin n n+1 B C D A √ n n n n 2n2 − Câu 26 Tính lim 3n + n4 A B C D Trang 2/5 Mã đề Câu 27 Phát biểu sau sai? B lim √ = n A lim qn = với |q| > 1 = với k > nk Câu 28 Dãy số sau có giới hạn 0? n2 − n2 − 3n B u = A un = n n2 5n − 3n2 C lim D lim un = c (Với un = c số) C un = − 2n 5n + n2 D un = n2 + n + (n + 1)2 Câu 29 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C D un Câu 30 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A −∞ B C D +∞ Câu 31 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B C a D [ = 60◦ , S O Câu 32 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a Khoảng cách từ A đến (S √ BC) √ √ a 57 a 57 2a 57 A B a 57 C D 19 17 19 Câu 33 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vuông góc với ∆ AC = BD √ = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ √ a a A B 2a C a D d = 30◦ , biết S BC tam giác Câu 34 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 13 26 16 [ = 60◦ , S O Câu 35 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a Khoảng cách từ O đến (S √ BC) √ √ a 57 a 57 2a 57 A B a 57 C D 19 17 19 √ Câu 36 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ a 38 3a 58 3a 3a 38 A B C D 29 29 29 29 Câu 37 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab 1 A B C D √ √ √ a + b2 a2 + b2 a2 + b2 a2 + b2 Trang 3/5 Mã đề d = 120◦ Câu 38 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 4a B 2a C 3a D 3a Câu 39 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a a 2a A B C D 3 Câu 40 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A 2a D a B a C Câu 41 ! Z Các khẳng định sau Z sai? Z f (x)dx = F(x) +C ⇒ A Z C f (x)dx = F(x) + C ⇒ f (u)dx = F(u) +C B Z f (t)dt = F(t) + C D Z f (x)dx = f (x) Z k f (x)dx = k f (x)dx, k số Câu 42 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (III) B (II) (III) Câu 43 Hàm số f có nguyên hàm K A f (x) liên tục K C f (x) có giá trị lớn K C (I) (II) D Cả ba mệnh đề B f (x) xác định K D f (x) có giá trị nhỏ K Câu 44 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (I) B Cả hai sai C Chỉ có (II) D Cả hai Câu 45 Trong khẳng định sau, khẳng định sai? A Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số B F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x C Z F(x) = − cos x nguyên hàm hàm số f (x) = sin x u0 (x) dx = log |u(x)| + C D u(x) Câu 46 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] Trang 4/5 Mã đề (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 47 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu B Chỉ có (II) C Cả hai câu sai D Chỉ có (I) Câu 48 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A Cả ba câu sai B F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số C F(x) = G(x) khoảng (a; b) D G(x) = F(x) − C khoảng (a; b), với C số Câu 49 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có nguyên hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (II) sai B Câu (I) sai C Khơng có câu D Câu (III) sai sai Câu 50 Mệnh đề sau sai? A F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) B Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Z C Nếu F(x) nguyên hàm f (x) (a; b) C số !0 Z D f (x)dx = f (x) f (x)dx = F(x) + C - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A A C C C B B B B 10 C 12 C 14 C 11 13 C B 16 C 15 17 D 18 A 19 A 20 21 A 22 23 A 24 25 D 26 27 A C B D B 28 C C 29 B 30 31 B 32 33 A 34 A 35 A 36 37 D D B 38 B 39 D 40 D B 41 A 42 C 43 A 44 C D 45 46 48 47 A 49 C 50 A B D ... 16 [122 14d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B < m ≤ C ≤ m ≤ D < m ≤ Câu 17 [122 11d] Số nghiệm phương trình 12. 3 x + 3.15 x − x = 20 A B C Vô nghiệm log 2x Câu 18 [122 9d]... F(x) + C - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A A C C C B B B B 10 C 12 C 14 C 11 13 C B 16 C 15 17 D 18 A 19 A 20 21 A 22 23 A 24... ln 10 √ √ D D y0 = 2x3 ln 10 Câu 19 [122 15d] Tìm m để phương trình x+ 1−x − 4.2 x+ 1−x − 3m + = có nghiệm 3 B ≤ m ≤ C < m ≤ D m ≥ A ≤ m ≤ 4 Câu 20 [122 18d] Cho a > 0, b > thỏa mãn log3a+2b+1