Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Giá trị giới hạn lim x→−1 (x2 − x + 7) bằng? A 9 B 0 C 5 D 7 Câu 2 Tính lim x→3 x2 − 9 x − 3 A 3 B −3 C 6 D[.]
Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi Câu Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B C D C D +∞ C D Câu Tính lim x→3 A x −9 x−3 B −3 2−n Câu Giá trị giới hạn lim n+1 A B −1 Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 2n − Câu Tính lim 2n + 3n + A −∞ B x−3 Câu [1] Tính lim bằng? x→3 x + A B −∞ C D +∞ C D +∞ Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ A lim [ f (x) − g(x)] = a − b B lim [ f (x) + g(x)] = a + b x→+∞ x→+∞ f (x) a C lim [ f (x)g(x)] = ab D lim = x→+∞ x→+∞ g(x) b 2n + Câu Tìm giới hạn lim n+1 A B C D √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − 1 A B C D − 4 Câu 10 Giá trị lim (3x2 − 2x + 1) x→1 A B +∞ C D Câu 11 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C Vô số D √ √ Câu 12 [12215d] Tìm m để phương trình x+ 1−x − 4.2 x+ 1−x − 3m + = có nghiệm A ≤ m ≤ B ≤ m ≤ C m ≥ D < m ≤ 4 x x x Câu 13 [12211d] Số nghiệm phương trình 12.3 + 3.15 − = 20 A B C D Vô nghiệm 2 Câu 14 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 13 B log2 2020 C 13 D 2020 Trang 1/5 Mã đề log(mx) = có nghiệm thực log(x + 1) A m < B m ≤ C m < ∨ m = D m < ∨ m > − xy Câu 16 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x√+ y √ √ √ 11 − 18 11 − 29 11 − 19 11 + 19 A Pmin = B Pmin = C Pmin = D Pmin = 21 9 Câu 15 [1226d] Tìm tham số thực m để phương trình Câu 17 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Câu 18 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (1; 3; 2) B (2; 4; 4) C (2; 4; 6) D (2; 4; 3) B < m ≤ A ≤ m ≤ = m − có nghiệm 3|x−2| C ≤ m ≤ D < m ≤ Câu 19 [12214d] Với giá trị m phương trình Câu 20 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị nhỏ biểu thức P = x + 2y thuộc tập " ! ! " đây? 5 D ;3 A (1; 2) B [3; 4) C 2; 2 ! 1 Câu 21 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n B C D +∞ A 2 Câu 22 Dãy số sau có giới hạn khác 0? n+1 A B √ n n Câu 23 Tính lim A n−1 n2 + C n D √ ab sin n n B C D C D Câu 24 Tính lim A 2n − 3n6 + n4 B Câu 25 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un B Nếu lim un = a < lim = > với n lim = −∞ v n ! un C Nếu lim un = a , lim = ±∞ lim = !vn un D Nếu lim un = a > lim = lim = +∞ un Câu 26 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A −∞ B +∞ C D Trang 2/5 Mã đề Câu 27 Dãy số sau có giới hạn 0? n2 + n + n2 − B u = A un = n 5n − 3n2 (n + 1)2 C un = − 2n 5n + n2 D un = n2 − 3n n2 Câu 28 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B 7n2 − 2n3 + Câu 29 Tính lim 3n + 2n2 + A - B Câu 30 Tính lim n+3 A B C D D C D C Câu 31 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ √ √ √ thẳng BD c a2 + b2 a b2 + c2 abc b2 + c2 b a2 + c2 B √ C √ D √ A √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 32 [2] Cho hai mặt phẳng (P) (Q) vuông góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD √ = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ a a D a A B C 2a Câu 33 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab 1 ab A B √ C √ D √ 2 2 a +b a +b a +b a2 + b2 Câu 34 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B C D a 6 Câu 35 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √ √ a a A B a C D a √ Câu 36 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 58 3a a 38 3a 38 A B C D 29 29 29 29 d = 30◦ , biết S BC tam giác Câu 37 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 13 16 26 Trang 3/5 Mã đề Câu 38 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ 2a a a B C a D A 2 [ = 60◦ , S O Câu 39 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a.√Khoảng cách từ A đến (S √ BC) √ √ 2a 57 a 57 a 57 A a 57 B C D 19 19 17 Câu 40 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a B C D a A 2 Câu 41 Trong khẳng định sau, khẳng định sai? A Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số √ B F(x) = x nguyên hàm hàm số f (x) = x C Cả ba đáp án D F(x) = x2 nguyên hàm hàm số f (x) = 2x Câu 42 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (II) (III) B (I) (III) Câu 43 Hàm số f có nguyên hàm K A f (x) có giá trị nhỏ K C f (x) có giá trị lớn K C Cả ba mệnh đề D (I) (II) B f (x) liên tục K D f (x) xác định K Câu 44 Cho hai hàm y = f (x), y = g(x) Z có đạo hàm Z R Phát biểu sau đúng? A Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z B Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z C Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Câu 45 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A Cả ba câu sai B F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số C F(x) = G(x) khoảng (a; b) D G(x) = F(x) − C khoảng (a; b), với C số Câu 46 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] Trang 4/5 Mã đề (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 47 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai sai B Cả hai C Chỉ có (I) D Chỉ có (II) Câu 48 Mệnh đề sau sai? A F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a;Zb) B Nếu F(x) nguyên hàm f (x) (a; b) C số !0 Z f (x)dx = f (x) C f (x)dx = F(x) + C D Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Câu 49 Z Trong khẳng định sau, khẳng định sai? Z dx = ln |x| + C, C số x Z D dx = x + C, C số 0dx = C, C số A B xα+1 C x dx = + C, C số α+1 Câu 50 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên Z α hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu B Chỉ có (I) C Chỉ có (II) D Cả hai câu sai - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A B B A D D 11 10 B D 12 A C 14 A 15 C 16 A 17 D 18 19 D 20 B C D 22 A 23 D 24 A 25 D 26 27 B A 13 21 C 28 C C B 30 29 A 31 C 33 32 D B C 34 C 35 D 36 A 37 A 38 D 39 B 40 D 41 B 42 D 43 B 44 B B 45 D 46 47 D 48 A 49 50 A C ... câu sai - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A B B A D D 11 10 B D 12 A C 14 A 15 C 16 A 17 D 18 19 D 20 B C D 22 A 23 D 24 A 25 D... 9 Câu 15 [122 6d] Tìm tham số thực m để phương trình Câu 17 [122 18d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Câu 18 [122 7d] Tìm... n2 + C n D √ ab sin n n B C D C D Câu 24 Tính lim A 2n − 3n6 + n4 B Câu 25 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un B Nếu lim un = a < lim = > với n lim