1. Trang chủ
  2. » Tất cả

Đề ôn thpt toán 12 (161)

6 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 113,67 KB

Nội dung

Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Tính lim x→+∞ x − 2 x + 3 A 2 B 1 C −3 D − 2 3 Câu 2 Dãy số nào có giới hạn bằng 0? A un = n2 − 4n B un = n[.]

Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi Câu Tính lim x→+∞ x−2 x+3 A C −3 D − !n C un = !n −2 D un = B +∞ C D B +∞ C D C − D C D +∞ B Câu Dãy số có giới hạn 0? n3 − 3n A un = n2 − 4n B un = n+1 Câu Giá trị lim (3x2 − 2x + 1) x→1 A Câu Tính lim x→3 A −3 x −9 x−3 − n2 Câu [1] Tính lim bằng? 2n + 1 A B Câu Giá trị lim(2x2 − 3x + 1) x→1 A B Câu Phát biểu sau sai? A lim qn = (|q| > 1) C lim = n B lim un = c (un = c số) D lim k = n Câu Cho f (x) = sin2 x − cos2 x − x Khi f (x) A − sin 2x B + sin 2x C −1 + sin 2x 2n + Câu Tìm giới hạn lim n+1 A B C x+1 Câu 10 Tính lim x→−∞ 6x − 1 A B C log 2x Câu 11 [1229d] Đạo hàm hàm số y = x2 − ln 2x − log 2x − ln 2x A y0 = B y0 = C y0 = x ln 10 x 2x3 ln 10 D −1 + sin x cos x D D D y0 = 2x3 ln 10 Câu 12 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị " nhỏ! biểu thức P = x + 2y thuộc tập đây? " ! 5 A ;3 B [3; 4) C (1; 2) D 2; 2 √ ab log(mx) = có nghiệm thực log(x + 1) C m < ∨ m > D m ≤ Câu 13 [1226d] Tìm tham số thực m để phương trình A m < B m < ∨ m = Trang 1/5 Mã đề √ Câu 14 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A Vô số B 62 C 63 D 64 Câu 15 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 13 B 2020 C 13 D log2 2020 Câu 16 [12213d] Có giá trị nguyên m để phương trình nhất? A B 3|x−1| C Câu 17 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C = 3m − có nghiệm D D Vơ nghiệm Câu 18 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 6) B (1; 3; 2) C (2; 4; 3) D (2; 4; 4) Câu 19 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b B C D A 2 q Câu 20 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 4] B m ∈ [0; 1] C m ∈ [−1; 0] D m ∈ [0; 2] un Câu 21 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A −∞ B +∞ C D 1 + + ··· + n Mệnh đề sau đúng? Câu 22 [3-1132d] Cho dãy số (un ) với un = n2 + 1 A lim un = B lim un = C lim un = D Dãy số un khơng có giới hạn n → +∞ Câu 23 Tính lim n+3 A B C D Câu 24 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un B Nếu lim un C Nếu lim un D Nếu lim un ! un = a < lim = > với n lim = −∞ v n ! un = a > lim = lim = +∞ = +∞ lim = a > lim(un ) = +∞ ! un = a , lim = ±∞ lim = n−1 Câu 25 Tính lim n +2 A B C Câu 26 Phát biểu sau sai? A lim un = c (Với un = c số) C lim √ = n B lim qn = với |q| > 1 D lim k = với k > n D Trang 2/5 Mã đề Câu 27 Dãy số sau có giới hạn khác 0? n+1 B A n n C sin n n 1 Câu 28 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A +∞ B C 2 Câu 29 Dãy số sau có giới hạn 0? − 2n n2 − B un = A un = 5n − 3n 5n + n2 C un = D √ n ! n2 + n + (n + 1)2 D D un = n2 − 3n n2 ! 3n + 2 Câu 30 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D [ = 60◦ , S O Câu 31 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a Khoảng cách từ O đến (S√BC) √ √ 2a 57 a 57 a 57 B a 57 C D A 17 19 19 √ Câu 32 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 58 a 38 3a 3a 38 A B C D 29 29 29 29 Câu 33 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) a 2a 5a 8a B C D A 9 9 3a Câu 34 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a 2a a A B C D 3 Câu 35 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ c a2 + b2 a b2 + c2 b a2 + c2 abc b2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 d = 120◦ Câu 36 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 3a B 2a C 4a D Câu 37 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A B C D a 2 Trang 3/5 Mã đề 0 0 Câu 38.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D 2 [ = 60◦ , S O Câu 39 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a Khoảng cách từ A đến (S √ √ BC) √ a 57 2a 57 a 57 A B a 57 D C 19 17 19 Câu 40 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a B a A C a D 2a Câu 41 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 42 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z B Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z C Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Câu 43 Trong khẳng định sau, khẳng định sai? A Cả ba đáp án B F(x) = x2 nguyên hàm hàm số f (x) = 2x √ C F(x) = x nguyên hàm hàm số f (x) = x D Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số Câu 44 Hàm số f có nguyên hàm K A f (x) có giá trị nhỏ K C f (x) xác định K B f (x) liên tục K D f (x) có giá trị lớn K Câu 45 !0 sau sai? Z Mệnh đề A f (x)dx = f (x) B F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) C Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Z D Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C Câu 46 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) Trang 4/5 Mã đề (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu B Cả hai câu sai C Chỉ có (II) D Chỉ có (I) Câu 47 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A Cả ba câu sai B G(x) = F(x) − C khoảng (a; b), với C số C F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số D F(x) = G(x) khoảng (a; b) Câu 48 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai sai B Chỉ có (I) C Cả hai D Chỉ có (II) Câu 49 Z Trong khẳng định sau, khẳng định sai? Z Z C dx = ln |x| + C, C số Z x xα+1 D xα dx = + C, C số α+1 dx = x + C, C số A B 0dx = C, C số Câu 50 Z [1233d-2] Mệnh đề sau sai? f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z Z B [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z Z Z C [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z Z D k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R A - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 B C C A C B A 10 A 11 A 12 A 13 D 14 B 15 A C B 16 A 17 18 A C 19 A C 20 21 C 22 A 23 C 24 B 25 C 26 B 29 30 A B 31 D 32 A 33 A 35 D 28 27 A C 34 B 36 D D 37 D 38 39 D 40 41 C 42 A 43 C 44 B B 45 B 46 A 47 B 48 D 50 D 49 D ... 2020 Câu 16 [122 13d] Có giá trị nguyên m để phương trình nhất? A B 3|x−1| C Câu 17 [122 11d] Số nghiệm phương trình 12. 3 x + 3.15 x − x = 20 A B C = 3m − có nghiệm D D Vơ nghiệm Câu 18 [122 7d] Tìm... tục R A - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 B C C A C B A 10 A 11 A 12 A 13 D 14 B 15 A C B 16 A 17 18 A C 19 A C 20 21 C 22 A 23... 2) C (2; 4; 3) D (2; 4; 4) Câu 19 [122 18d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b B C D A 2 q Câu 20 [122 16d] Tìm tất giá trị thực tham số

Ngày đăng: 07/03/2023, 14:58

w