Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Tính giới hạn lim x→+∞ 2x + 1 x + 1 A 2 B 1 2 C 1 D −1 Câu 2 Tính lim x→−∞ x + 1 6x − 2 bằng A 1 B 1 3 C 1[.]
Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi 2x + x→+∞ x + 1 A B x+1 Câu Tính lim x→−∞ 6x − A B √ √ 4n2 + − n + Câu Tính lim 2n − A +∞ B Câu Tính giới hạn lim C D −1 D C D C D C D C +∞ D C Câu Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B Câu [1] Tính lim x→3 A −∞ x−3 bằng? x+3 B +∞ Câu Giá trị lim (3x2 − 2x + 1) x→1 A B Câu Phát biểu sau sai? A lim k = n C lim qn = (|q| > 1) 4x + Câu [1] Tính lim bằng? x→−∞ x + A −4 B −1 = n D lim un = c (un = c số) B lim C Câu Cho f (x) = sin x − cos2 x − x Khi f (x) A −1 + sin 2x B −1 + sin x cos x C + sin 2x x+2 Câu 10 Tính lim bằng? x→2 x A B C D 2 D − sin 2x D Câu 11 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 4) B (1; 3; 2) C (2; 4; 3) D (2; 4; 6) Câu 12 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B < m ≤ C ≤ m ≤ D ≤ m ≤ log(mx) = có nghiệm thực Câu 13 [1226d] Tìm tham số thực m để phương trình log(x + 1) A m < ∨ m > B m < C m ≤ D m < ∨ m = q Câu 14 [12216d] Tìm tất giá trị thực tham số m để phương trình log23 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 1] B m ∈ [0; 4] C m ∈ [0; 2] D m ∈ [−1; 0] Trang 1/5 Mã đề Câu 15 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị nhỏ biểu thức P = x + 2y thuộc tập " đây? ! " ! 5 A (1; 2) B [3; 4) C ;3 D 2; 2 Câu 16 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B Vô nghiệm C √ √ √ ab D Câu 17 [12215d] Tìm m để phương trình x+ 1−x − 4.2 x+ 1−x − 3m + = có nghiệm 3 B m ≥ C ≤ m ≤ D < m ≤ A ≤ m ≤ 4 2 Câu 18 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a + b + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Câu 19 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 B m ≤ C m > D m ≥ A m < 4 4 x Câu 20 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 +3)−log2 (2020−21−x ) A log2 2020 B log2 13 C 2020 D 13 Câu 21 Tính lim A 2 2n2 − 3n6 + n4 B Câu 22 Dãy số sau có giới hạn khác 0? n+1 A B n n C C D sin n n D √ n Câu 23 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C D ! 1 + + ··· + 1+2 + + ··· + n A B C +∞ 2 Câu 25 Dãy số sau có giới hạn 0? n2 − 3n n2 + n + 1 − 2n B u = C un = A un = n 2 n (n + 1) 5n + n2 Câu 24 [3-1131d] Tính lim D D un = n2 − 5n − 3n2 Câu 26 Phát biểu sau sai? A lim un = c (Với un = c số) C lim √ = n 12 + 22 + · · · + n2 n3 B = với k > nk D lim qn = với |q| > B lim Câu 27 [3-1133d] Tính lim A C +∞ D Trang 2/5 Mã đề C un D −∞ C D +∞ Câu 28 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A +∞ B cos n + sin n Câu 29 Tính lim n2 + A −∞ B Câu 30 Tính lim 1 + + ··· + 1.2 2.3 n(n + 1) ! Câu 31 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a A a D B a C Câu 32 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B C a D d = 30◦ , biết S BC tam giác Câu 33 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 13 16 26 A B C D Câu 34 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C) (A0C D) √ √ √ √ a a 2a A a B C D d = 120◦ Câu 35 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a D 2a A 4a B 3a C Câu 36 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A a B C D Câu 37 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 2a a 8a 5a A B C D 9 9 Câu 38 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A a B a C D 2a Câu 39 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ b a2 + c2 a b2 + c2 abc b2 + c2 c a2 + b2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Trang 3/5 Mã đề [ = 60◦ , S O Câu 40 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ BC) √ với mặt đáy S O = a Khoảng cách từ A đến (S √ √ a 57 2a 57 a 57 C A B a 57 D 19 17 19 Câu 41 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C Câu 42 Hàm số f có nguyên hàm K A f (x) có giá trị nhỏ K C f (x) có giá trị lớn K D B f (x) liên tục K D f (x) xác định K Câu 43 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (I) B Cả hai C Chỉ có (II) D Cả hai sai Câu 44 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A Cả ba mệnh đề B (II) (III) C (I) (III) D (I) (II) Câu 45 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A F(x) = G(x) khoảng (a; b) B Cả ba câu sai C F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số D G(x) = F(x) − C khoảng (a; b), với C số Câu 46 ! định sau sai? Z Các khẳng f (x)dx = f (x) A Z C f (x)dx = F(x) +C ⇒ Z B Z f (u)dx = F(u) +C D Z Z f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C Z k f (x)dx = k f (x)dx, k số Câu 47 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) Trang 4/5 Mã đề (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (II) sai B Khơng có câu C Câu (I) sai D Câu (III) sai sai Câu 48 Trong khẳng định sau, khẳng định sai? A F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x B F(x) = − cos x nguyên hàm hàm số f (x) = sin x C Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Z u0 (x) dx = log |u(x)| + C D u(x) Câu 49 Trong khẳng định sau, khẳng định sai? A F(x) = x2 nguyên hàm hàm số f (x) = 2x √ B F(x) = x nguyên hàm hàm số f (x) = x C Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số D Cả ba đáp án Câu 50 Mệnh đề sau sai? Z A Nếu F(x) nguyên hàm f (x) (a; b) C số !0 Z B f (x)dx = f (x) f (x)dx = F(x) + C C F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) D Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A B C A C C B C D 10 A 11 D 12 A 13 D 14 D 16 D 15 C 17 A 18 A 19 B 20 21 B 22 A 23 D C 25 24 D 26 D 27 B 28 29 B 30 31 C 32 33 A B C B 34 35 C 36 A 37 C 38 39 B B 42 B 44 C D 45 B 40 A 41 A 43 C 46 47 B 48 49 B 50 D C D C ... hai đường thẳng S B AD √ √ √ √ a a A a D B a C Câu 32 [2] Cho hình chóp S ABCD có đáy hình vuông cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B C a D d =... BC tam giác Câu 33 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vuông √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 13 16... b) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A B C A C C B C D 10 A 11 D 12 A 13 D 14 D 16 D 15 C 17 A 18 A 19 B 20 21 B 22 A 23 D C 25