Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Tính giới hạn lim x→−∞ √ x2 + 3x + 5 4x − 1 A 1 B 0 C − 1 4 D 1 4 Câu 2 Giá trị của lim x→1 (3x2 − 2x + 1)[.]
Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi √ x2 + 3x + x→−∞ 4x − B Câu Tính giới hạn lim A 1 C − D B +∞ C D B −∞ C +∞ D Câu Giá trị lim (3x2 − 2x + 1) x→1 A 3 Câu Tính lim x→1 A x −1 x−1 x+1 Câu Tính lim x→−∞ 6x − A B − n2 Câu [1] Tính lim bằng? 2n + 1 A B D C − D C D C D !n C !n D − C Câu Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B 2n + Câu Tìm giới hạn lim n+1 A B Câu !Dãy số sau có giới !n hạn 0? n A B e 2n + Câu Tính giới hạn lim 3n + A B √ √ 4n2 + − n + Câu 10 Tính lim 2n − 3 A B +∞ C C D D Câu 11 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B < m ≤ C ≤ m ≤ D < m ≤ log 2x Câu 12 [1229d] Đạo hàm hàm số y = x2 1 − log 2x − ln 2x − ln 2x A y0 = B y0 = C y0 = D y0 = 3 2x ln 10 x 2x ln 10 x ln 10 Câu 13 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị " nhỏ! biểu thức P = x + 2y thuộc tập " đây? ! 5 A ;3 B (1; 2) C 2; D [3; 4) 2 √ ab Trang 1/5 Mã đề Câu 14 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B Vô nghiệm C D Câu 15 [12213d] Có giá trị nguyên m để phương trình nhất? A B 1 3|x−1| C Câu 16 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C = 3m − có nghiệm D D Vơ nghiệm Câu 17 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m > B m < C m ≥ D m ≤ Câu 18 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m ≤ B m ≥ C m < D m > 4 4 Câu 19 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x+1 y y A xy = e − B xy = e + C xy0 = −ey + D xy0 = −ey − √ Câu 20 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 64 B 63 C Vô số D 62 + + ··· + n Mệnh đề sau đúng? Câu 21 [3-1132d] Cho dãy số (un ) với un = n2 + 1 A lim un = B lim un = C lim un = D Dãy số un khơng có giới hạn n → +∞ cos n + sin n n2 + B ! 1 + + ··· + Câu 23 Tính lim 1.2 2.3 n(n + 1) Câu 22 Tính lim A A B Câu 24 Dãy số sau có giới hạn khác 0? sin n A B n n Câu 25 A - Câu 26 Câu 27 A C +∞ D −∞ C D C √ n D n+1 n 7n2 − 2n3 + Tính lim 3n + 2n2 + B C ! 1 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n B +∞ C Trong khẳng định có khẳng định đúng? D D (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < Trang 2/5 Mã đề (III) lim qn = +∞ |q| > A B C D Câu 28 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A +∞ B Câu 29 Dãy số sau có giới hạn 0? n2 − 3n n2 − A un = B u = n n2 5n − 3n2 C C un = un D −∞ n2 + n + (n + 1)2 D un = − 2n 5n + n2 ! 3n + 2 + a − 4a = Tổng phần tử Câu 30 Gọi S tập hợp tham số nguyên a thỏa mãn lim n+2 S A B C D Câu 31 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a B C D a A Câu 32 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 8a 2a 5a a B C D A 9 9 Câu 33 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab A √ B D √ C √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 34 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a B C a D A a 3 Câu 35 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A B a C a D 2a d = 30◦ , biết S BC tam giác Câu 36 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 16 13 26 Câu 37 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab A √ B C √ D √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 38 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng 0 (AB0C) √ (A C D) √ √ √ 2a a a A B a C D 2 Trang 3/5 Mã đề [ = 60◦ , S O Câu 39 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a.√Khoảng cách từ O đến (S BC) √ √ a 57 2a 57 a 57 A B C a 57 D 17 19 19 Câu 40 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ √ √ √ thẳng BD abc b2 + c2 a b2 + c2 b a2 + c2 c a2 + b2 B √ C √ D √ A √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 41 Trong khẳng định sau, khẳng định sai? A F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x B Z F(x) = − cos x nguyên hàm hàm số f (x) = sin x u0 (x) C dx = log |u(x)| + C u(x) D Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Câu 42 Hàm số f có nguyên hàm K A f (x) có giá trị lớn K C f (x) liên tục K B f (x) xác định K D f (x) có giá trị nhỏ K Câu 43 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (II) (III) B (I) (II) C (I) (III) D Cả ba mệnh đề Câu 44 f (x), g(x) liên Z Cho hàm số Z Z tục R Trong cácZmệnh đề sau, mệnh Z đề sai? A f (x)g(x)dx = f (x)dx g(x)dx B k f (x)dx = f f (x)dx, k ∈ R, k , Z Z Z Z Z Z C ( f (x) − g(x))dx = f (x)dx − g(x)dx D ( f (x) + g(x))dx = f (x)dx + g(x)dx Câu 45 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (I) B Cả hai câu sai C Chỉ có (II) D Cả hai câu Câu 46 Z Trong khẳng định sau, khẳng định sai? Z A dx = ln |x| + C, C số B 0dx = C, C số x Z Z xα+1 C dx = x + C, C số D xα dx = + C, C số α+1 Trang 4/5 Mã đề Câu 47 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có f (x) = F(x) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) D Với x ∈ [a; b], ta có F (x) = f (x) Câu 48 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai B Chỉ có (I) C Cả hai sai D Chỉ có (II) Câu 49 !0 sau sai? Z Mệnh đề A f (x)dx = f (x) B F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) C Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Z D Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C Câu 50 Trong khẳng định sau, khẳng định sai?√ A F(x) = x nguyên hàm hàm số f (x) = x B Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số C Cả ba đáp án D F(x) = x2 nguyên hàm hàm số f (x) = 2x - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 C D C C A C C 10 C 12 B 13 A 15 D 11 C D 14 16 A B 17 C 18 A C 19 A 20 21 A 22 A D 24 D 25 A 26 D 27 A 28 23 B 29 D 30 B B 31 C 32 33 C 34 35 B 37 36 D 41 43 C B 49 C D 40 C 42 C 44 A 45 D 47 D 38 C 39 C C B 46 D 48 D 50 A ... có đáy hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A B a C a D 2a d = 30◦ , biết S BC tam giác Câu 36 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh... hai√đường thẳng BD S C √ √ √ a a a B C D a A Câu 32 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách... 2x - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 C D C C A C C 10 C 12 B 13 A 15 D 11 C D 14 16 A B 17 C 18 A C 19 A 20 21 A 22 A D 24 D 25