1. Trang chủ
  2. » Tất cả

Ôn tập toán thptqg pdf (67)

6 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 114,75 KB

Nội dung

Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Giả sử ta có lim x→+∞ f (x) = a và lim x→+∞ f (x) = b Trong các mệnh đề sau, mệnh đề nào sai? A lim x→+∞ [[.]

Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ A lim [ f (x) − g(x)] = a − b x→+∞ x→+∞ C lim [ f (x) + g(x)] = a + b x→+∞ B lim [ f (x)g(x)] = ab x→+∞ f (x) a D lim = x→+∞ g(x) b Câu Giá trị lim(2x2 − 3x + 1) x→1 A B x+1 4x + A B x−2 Câu Tính lim x→+∞ x + A B C D +∞ C D C −3 D − C −∞ D C +∞ D Câu Tính lim x→+∞ Câu Tính lim x→1 A x3 − x−1 B +∞ Câu Giá trị lim (3x2 − 2x + 1) x→1 A B x+2 bằng? x→2 x A B C D x+1 Câu Tính lim x→−∞ 6x − 1 A B C D 2x + Câu Tính giới hạn lim x→+∞ x + 1 A B C −1 D 2 Câu 10 Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim− f (x) = f (a) lim+ f (x) = f (b) B lim+ f (x) = f (a) lim+ f (x) = f (b) Câu Tính lim x→a x→b x→a x→b C lim+ f (x) = f (a) lim− f (x) = f (b) x→a x→b x→a x→b D lim− f (x) = f (a) lim− f (x) = f (b) Câu 11 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị nhỏ biểu thức P" = x!+ 2y thuộc tập đây? " ! 5 A (1; 2) B 2; C [3; 4) D ;3 2 √ ab Câu 12 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Trang 1/5 Mã đề √ Câu 13 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 62 B Vô số C 63 D 64 Câu 14 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≥ B m ≤ C m > D m < √ √ − 3m + = có nghiệm C ≤ m ≤ D m ≥ Câu 16 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B ≤ m ≤ C ≤ m ≤ D < m ≤ Câu 17 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x + A xy0 = ey − B xy0 = −ey + C xy0 = −ey − D xy0 = ey + Câu 15 [12215d] Tìm m để phương trình x+ 3 B ≤ m ≤ A < m ≤ 4 1−x2 − 4.2 x+ 1−x2 Câu 18 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 B m ≥ C m < D m > A m ≤ 4 4 − xy Câu 19 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x√+ y √ √ √ 11 − 19 18 11 − 29 11 + 19 11 − B Pmin = C Pmin = D Pmin = A Pmin = 21 Câu 20 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C Vô nghiệm D ! 3n + 2 + a − 4a = Tổng phần tử Câu 21 Gọi S tập hợp tham số nguyên a thỏa mãn lim n+2 S A B C D ! 1 Câu 22 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B C +∞ D 2 Câu 23 Dãy số sau có giới hạn khác 0? 1 sin n n+1 A B √ C D n n n n un Câu 24 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A −∞ B C +∞ D Câu 25 Dãy số sau có giới hạn 0? n2 − n2 − 3n A un = B u = n 5n − 3n2 n2 C un = n2 + n + (n + 1)2 D un = − 2n 5n + n2 Câu 26 Trong mệnh đề đây, mệnh đề sai? ! un A Nếu lim un = a < lim = > với n lim = −∞ B Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un C Nếu lim un = a , lim = ±∞ lim = Trang 2/5 Mã đề ! un D Nếu lim un = a > lim = lim = +∞ Câu 27 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C D Câu 28 Phát biểu sau sai? A lim qn = với |q| > C lim un = c (Với un = c số) Câu 29 Tính lim n+3 A B 7n − 2n3 + Câu 30 Tính lim 3n + 2n2 + A B B lim √ = n D lim k = với k > n C D D - 3a Câu 31 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ 2a a a a B C D A 3 [ = 60◦ , S O Câu 32 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ √ Khoảng cách từ A đến (S√BC) √ 2a 57 a 57 a 57 A a 57 B C D 19 19 17 [ = 60◦ , S O Câu 33 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a √ Khoảng cách từ O đến (S BC) √ √ 2a 57 a 57 a 57 A B C a 57 D 19 19 17 Câu 34 [2] Cho chóp S ABCD có đáy hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A 2a B C a D a Câu 35 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A B a C D 2 0 0 Câu 36 [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b, AA = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ c a2 + b2 abc b2 + c2 a b2 + c2 b a2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 C Trang 3/5 Mã đề Câu 37 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab C √ D √ A B √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 38 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD √ = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ √ a a A B 2a C a D Câu 39 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B C a D d = 30◦ , biết S BC tam giác Câu 40 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 13 16 26 Câu 41 Z Trong khẳng định sau, khẳng định sai? Z xα+1 dx = ln |x| + C, C số B xα dx = + C, C số A α+1 Z x Z 0dx = C, C số C Câu 42 Hàm số f có nguyên hàm K A f (x) xác định K C f (x) liên tục K dx = x + C, C số D B f (x) có giá trị nhỏ K D f (x) có giá trị lớn K Câu 43 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z B k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z C [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z D f (x)dx = f (x) + C, với f (x) có đạo hàm R A Z Câu 44 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ (a; b), ta có f (x) = F(x) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) Câu 45 Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? A Z C ( f (x) + g(x))dx = f (x)dx + g(x)dx Z k f (x)dx = f f (x)dx, k ∈ R, k , f (x)g(x)dx = B Z D f (x)dx g(x)dx Z Z ( f (x) − g(x))dx = f (x)dx − g(x)dx Câu 46 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) Trang 4/5 Mã đề (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu sai B Chỉ có (I) C Cả hai câu D Chỉ có (II) Câu 47 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 48 Trong khẳng định sau, khẳng định sai? A Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số B F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x C Z F(x) = − cos x nguyên hàm hàm số f (x) = sin x u0 (x) dx = log |u(x)| + C D u(x) Câu 49 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Khơng có câu B Câu (III) sai C Câu (II) sai D Câu (I) sai sai Câu 50 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A F(x) = G(x) khoảng (a; b) B G(x) = F(x) − C khoảng (a; b), với C số C F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số D Cả ba câu sai - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D B D B B A D 10 11 D 12 13 A 15 D A C D 14 A D 16 B 17 A 18 A 19 A 20 21 A 22 A D 23 D 24 D 25 D 26 D 27 28 A B D 29 D 30 31 B 32 C 33 B 34 C 35 B 36 C 37 D 38 A 39 D 40 A 41 B 42 43 B 44 45 B 46 47 B 48 49 A 50 C D C D B ... trình 12.3 x + 3.15 x − x = 20 A B C Vô nghiệm D ! 3n + 2 + a − 4a = Tổng phần tử Câu 21 Gọi S tập hợp tham số nguyên a thỏa mãn lim n+2 S A B C D ! 1 Câu 22 [3-1131d] Tính lim + + ··· + 1+2... đến (S BC) √ √ 2a 57 a 57 a 57 A B C a 57 D 19 19 17 Câu 34 [2] Cho chóp S ABCD có đáy hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A 2a B C a D a Câu 35 [2]... a a A B C a D d = 30◦ , biết S BC tam giác Câu 40 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39

Ngày đăng: 07/03/2023, 06:49

w