1. Trang chủ
  2. » Khoa Học Tự Nhiên

trigonometry

22 186 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 22
Dung lượng 737,5 KB

Nội dung

Maths Extension 1 – Trigonometry Trigonometry  Trigonometric Ratios  Exact Values & Triangles  Trigonometric Identities  ASTC Rule  Trigonometric Graphs  Sine & Cosine Rules  Area of a Triangle  Trigonometric Equations  Sums and Differences of angles  Double Angles  Triple Angles  Half Angles  T – formula  Subsidiary Angle formula  General Solutions of Trigonometric Equations  Radians  Arcs, Sectors, Segments  Trigonometric Limits  Differentiation of Trigonometric Functions  Integration of Trigonometric Functions  Integration of sin 2 x and cos 2 x  INVERSE TRIGNOMETRY  Inverse Sin – Graph, Domain, Range, Properties  Inverse Cos – Graph, Domain, Range, Properties  Inverse Tan – Graph, Domain, Range, Properties  Differentiation of Inverse Trigonometric Functions  Integration of Inverse Trigonometric Functions http://fatmuscle.cjb.net 1 Maths Extension 1 – Trigonometry Trigonometric Ratios Sine sin θ = hypotenuse opposite Cosine cos θ = hypotenuse adjacent Tangent tan θ = adjacent opposite Cosecant cosec θ = θ sin 1 = opposite hypotenuse Secant sec θ = θ cos 1 = adjacent hypotenuse Cotangent cot θ = θ tan 1 = opposite adjacent sin θ = ( ) θ −°90cos cos θ = ( ) θ −°90sin tan θ = ( ) θ −°90cot cosec θ = ( ) θ −°90sec sec θ = ( ) θ −°90cosec cot θ = ( ) θ −°90tan 60 seconds = 1 minute 60’’ = 1’ 60 minutes = 1 degree 60’ = 1° θ θ θ cos sin tan = θ θ θ sin cos cot = http://fatmuscle.cjb.net 2 θ θ hypotenuse hypotenuse opposite adjacent adjacent opposite Maths Extension 1 – Trigonometry Exact Values & Triangles 0° 30° 60° 45° 90° 180° sin 0 2 1 2 3 2 1 1 0 cos 1 2 3 2 1 2 1 0 –1 tan 0 3 1 3 1 –– 0 cos ec –– 2 3 2 2 1 –– sec 1 3 2 2 2 –– –1 cot –– 3 3 1 1 0 –– Trigonometric Identities θθ 22 cossin + = 1 θ 2 cos = θ 2 sin1− θ 2 sin = θ 2 cos1− θ 2 cot1+ = cosec 2 θ θ 2 cot = cosec 2 θ – 1 1 = cosec 2 θ – θ 2 cot 1tan 2 + θ = θ 2 sec θ 2 tan = 1sec 2 − θ 1 = θθ 22 tansec − http://fatmuscle.cjb.net 3 1 1 2 45° 3 1 2 30° 60° Maths Extension 1 – Trigonometry ASTC Rule First Quadrant: All positive θ sin θ sin + θ cos θ cos + θ tan θ tan + Second Quadrant: Sine positive ( ) θ −°180sin θ sin + ( ) θ −°180cos – θ cos – ( ) θ −°180tan – θ tan – Third Quadrant: Tangent positive ( ) θ +°180sin – θ sin – ( ) θ +°180cos – θ cos – ( ) θ +°180tan θ tan + Fourth Quadrant: Cosine positive ( ) θ −°360sin – θ sin – ( ) θ −°360cos θ cos + ( ) θ −°360tan – θ tan – http://fatmuscle.cjb.net 4 ° ° 360 0 90° 180° 270° S A T C 1 st Quadrant 4 th Quadrant 2 nd Quadrant 3 rd Quadrant Maths Extension 1 – Trigonometry Trigonometric Graphs Sine & Cosine Rules Sine Rule: C c B b A a sinsinsin == OR c C b B a A sinsinsin == Cosine Rule: Abccba cos2 222 −+= http://fatmuscle.cjb.net 5 A B C a b c A a b c Maths Extension 1 – Trigonometry Area of a Triangle CabA sin 2 1 =  C is the angle  a & b are the two adjacent sides http://fatmuscle.cjb.net 6 C b a Maths Extension 1 – Trigonometry Trigonometric Equations  Check the domain eg. °≤≤° 3600 θ  Check degrees ( °≤≤° 3600 θ ) or radians ( πθ 20 ≤≤ )  If double angle, go 2 revolutions  If triple angle, go 3 revolutions, etc…  If half angles, go half or one revolution (safe side) Example 1 Solve sin θ = 2 1 for °≤≤° 3600 θ θ sin = 2 1 θ = 30°, 150° Example 2 Solve cos 2θ = 2 1 for °≤≤° 3600 θ θ 2cos = 2 1 θ 2 = 60°, 300°, 420°, 660° θ = 30°, 150°, 210°, 330° Example 3 Solve tan 2 θ = 1 for °≤≤° 3600 θ tan 2 θ = 1 2 θ = 45°, 225° θ = 90° Example 4 0cos2sin =+ θθ θθθ coscossin2 + = 0 ( ) 1sin2cos + θθ = 0 θ cos = 0 θ sin = 2 1 − θ = 90°, 270° θ = 210°, 330° Example 5 22cossin3 −=− θθ ( ) θθ 2 sin21sin3 −− = –2 1sin3sin2 2 ++ θθ = 0 http://fatmuscle.cjb.net 7 Maths Extension 1 – Trigonometry ( )( ) 1sin1sin2 ++ θθ = 0 θ sin = 2 1 − θ sin = –1 θ = 210°, 330° θ = 270° http://fatmuscle.cjb.net 8 Maths Extension 1 – Trigonometry Sums and Differences of angles ( ) βα +sin = βαβα sincoscossin + ( ) βα −sin = βαβα sincoscossin − ( ) βα +cos = βαβα sinsincoscos − ( ) βα −cos = βαβα sinsincoscos + ( ) βα +tan = βα βα tantan1 tantan − + ( ) βα −tan = βα βα tantan1 tantan + − Double Angles θ 2sin = θθ cossin2 θ 2cos = θθ 22 sincos − = θ 2 sin21− = 1cos2 2 − θ θ 2tan = θ θ 2 tan21 tan2 − θ 2 sin = ( ) θ 2cos1 2 1 − θ 2 cos = ( ) θ 2cos1 2 1 + Triple Angles θ 3sin = θθ 3 sin4sin3 − θ 3cos = θθ cos3cos4 3 − θ 3tan = θ θθ 2 3 tan31 tantan3 − − Half Angles θ sin = 22 cossin2 θθ θ cos = 2 2 2 2 sincos θθ − = 2 2 sin21 θ − = 1cos2 2 2 − θ http://fatmuscle.cjb.net 9 Maths Extension 1 – Trigonometry θ tan = 2 2 2 tan21 tan2 θ θ − http://fatmuscle.cjb.net 10 [...]... http://fatmuscle.cjb.net 13 Maths Extension 1 – Trigonometry General Solutions of Trigonometric Equations sin θ = sin α Then θ = nπ + (−1) nα cosθ = cosα Then θ = 2nπ ± α tan θ = tan α Then θ = nπ + α Radians πc = 180° 1° = πc 180 Arcs, Sectors, Segments Arc Length l = rθ l θ r Area of Sector A = 1 r 2θ 2 θ r http://fatmuscle.cjb.net 14 Maths Extension 1 – Trigonometry Area of Segment A = 1 r 2 (θ − sin... d ( tan(ax + b) ) dx = a sec 2 (ax + b) d sec x dx = sec x tan x d cos ecx dx = − cot x cos ecx = − cos ec 2 x d cot x dx http://fatmuscle.cjb.net 16 Maths Extension 1 – Trigonometry http://fatmuscle.cjb.net 17 Maths Extension 1 – Trigonometry Integration of Trigonometric Functions ∫ cos ax dx = 1 sin ax + c a ∫ sin ax dx = 1 − cos ax + c a ∫ sec = 1 tan ax + c a =  x sin −1   + c a =  x ... 2 + sin 2 θ 2 2 θ cos 2 = = 2t 1+ t 2 1− t 2 1+ t 2 = becomes tan sin θ cosθ = sin cos 2t 1− t2 1 − tan 2 θ 2 1 + tan 2 θ 2 = tan θ cancel; 1− t2 1+ t2 http://fatmuscle.cjb.net 12 Maths Extension 1 – Trigonometry Subsidiary Angle Formula a sin x + b cos x a b = = = = R (sin x cos x + cos x sin x ) R sin x cos x + R cos x sin x ∴ a2 R cos x = = R 2 cos 2 x ∴ b2 R 2 sin 2 x a 2 + b2 sin 2 x + cos 2 x...Maths Extension 1 – Trigonometry Deriving the Triple Angles sin 3θ = sin ( 2θ + θ ) = sin 2θ cosθ + cos 2θ sin θ = 2 sin θ cosθ cosθ + (1 − 2 sin 2 θ ) sin θ = 2 sin θ cos2 θ + sin θ − 2 sin 3 θ = 2 sin θ (1 − sin 2 θ ) +... l θ r Area of Sector A = 1 r 2θ 2 θ r http://fatmuscle.cjb.net 14 Maths Extension 1 – Trigonometry Area of Segment A = 1 r 2 (θ − sin θ ) 2 Segment θ r http://fatmuscle.cjb.net 15 Maths Extension 1 – Trigonometry Trigonometric Limits lim x →0 sin x x = lim x→0 tan x x = lim cos x x→0 =1 Differentiation of Trigonometric Functions d ( sin x ) dx = cos x d [ sin f ( x)] dx = f ' ( x) cos f ( x) d ( sin(ax... θ + tan θ 1− tan 2 θ tan θ 1 − 2 1− tan tan θ 2 θ 2 tan θ + tan θ − tan 3 θ 1− tan 2 θ 1− tan 2 θ − 2 tan 2 θ 1− tan 2 θ 3 3 tan θ − tan θ 1 − 3 tan 2 θ http://fatmuscle.cjb.net 11 Maths Extension 1 – Trigonometry T – Formulae Let t = tan θ2 sin θ cosθ = = = tan θ sin θ = = 2t 1+ t2 1− t2 1+ t2 2t 1− t2 2 sin θ cos θ 2 2 θ 2 2 sin cos cos 2 θ + sin 2 Using half angles _ Divide by “1” θ 2 2 θ 2 sin 2... 1 − cot ax + c a ∫ sec ax tan ax dx = 1 sec ax + c a ∫ ax dx 1 a −x 2 dx 2 1 ∫− ∫a 2 a −x 2 2 1 + x2 2 dx dx 2 ∫ cos ecax.cot ax dx = 1 − cos ecax + c a http://fatmuscle.cjb.net 18 Maths Extension 1 – Trigonometry Integration of sin2x and cos2x cos 2 x = 2 cos2 x − 1 cos 2 x + 1 = 2 cos2 x 1 ( cos 2 x + 1) = cos2 x 2 2 = 1 ∫ ( cos 2 x + 1) dx 2 ∫ cos x dx 1 1 = 2 ( 2 sin 2 x + x ) + C = 1 sin 2 x +... sin 2 x + C 4 = 1 − sin 2 x = 1 − cos 2 x = 1 (1 − cos 2 x ) 2 1 = 2 ∫ (1 − cos 2 x ) dx = 1 ( x − 1 sin 2 x ) + C 2 2 1 1 = 2 x − 4 sin 2 x + C ∫ sin 2 http://fatmuscle.cjb.net 19 Maths Extension 1 – Trigonometry INVERSE TRIGNOMETRY Inverse Sin – Graph, Domain, Range, Properties y −1 ≤ x ≤ 1 π 2 x -2 − 2 π π ≤y≤ 2 2 −π 2 sin −1 (− x) = − sin −1 x Inverse Cos – Graph, Domain, Range, Properties y −1... x -1 0 1 cos −1 (− x) = π − cos −1 x Inverse Tan – Graph, Domain, Range, Properties y 2 π 2 x − −π 2 -2 All real x π π ≤y≤ 2 2 tan −1 (− x) = − tan −1 x http://fatmuscle.cjb.net 20 Maths Extension 1 – Trigonometry Differentiation of Inverse Trigonometric Functions ( ) = ( ) = d sin −1 x dx d x sin −1 a dx ( d sin −1 f ( x) dx ) 1 1 − x2 1 a − x2 2 f ' ( x) = 1 − [ f ( x)]2 ( ) = − ( ) = − = − d cos... 1 − x2 1 a2 − x2 f ' ( x) 1 − [ f ( x)]2 ( ) = 1 1 + x2 ( ) = a a + x2 = f ' ( x) a + [ f ( x)]2 d tan −1 x dx d x tan −1 a dx ( d tan −1 f ( x) dx ) 2 http://fatmuscle.cjb.net 21 Maths Extension 1 – Trigonometry Integration of Inverse Trigonometric Functions ∫ 1 a −x 2 1 ∫− ∫a dx 2 a2 − x2 2 1 + x2 dx dx =  x sin −1   + c a =  x  x cos −1   + c OR − sin −1   + c a a = 1 x tan

Ngày đăng: 27/03/2014, 11:58

Xem thêm

TỪ KHÓA LIÊN QUAN

w