Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 22 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
22
Dung lượng
737,5 KB
Nội dung
Maths Extension 1 – Trigonometry
Trigonometry
Trigonometric Ratios
Exact Values & Triangles
Trigonometric Identities
ASTC Rule
Trigonometric Graphs
Sine & Cosine Rules
Area of a Triangle
Trigonometric Equations
Sums and Differences of angles
Double Angles
Triple Angles
Half Angles
T – formula
Subsidiary Angle formula
General Solutions of Trigonometric Equations
Radians
Arcs, Sectors, Segments
Trigonometric Limits
Differentiation of Trigonometric Functions
Integration of Trigonometric Functions
Integration of sin
2
x and cos
2
x
INVERSE TRIGNOMETRY
Inverse Sin – Graph, Domain, Range, Properties
Inverse Cos – Graph, Domain, Range, Properties
Inverse Tan – Graph, Domain, Range, Properties
Differentiation of Inverse Trigonometric Functions
Integration of Inverse Trigonometric Functions
http://fatmuscle.cjb.net 1
Maths Extension 1 – Trigonometry
Trigonometric Ratios
Sine sin
θ
=
hypotenuse
opposite
Cosine cos
θ
=
hypotenuse
adjacent
Tangent tan
θ
=
adjacent
opposite
Cosecant cosec
θ
=
θ
sin
1
=
opposite
hypotenuse
Secant sec
θ
=
θ
cos
1
=
adjacent
hypotenuse
Cotangent cot
θ
=
θ
tan
1
=
opposite
adjacent
sin
θ
=
( )
θ
−°90cos
cos
θ
=
( )
θ
−°90sin
tan
θ
=
( )
θ
−°90cot
cosec
θ
=
( )
θ
−°90sec
sec
θ
=
( )
θ
−°90cosec
cot
θ
=
( )
θ
−°90tan
60 seconds = 1 minute 60’’ = 1’
60 minutes = 1 degree 60’ = 1°
θ
θ
θ
cos
sin
tan =
θ
θ
θ
sin
cos
cot =
http://fatmuscle.cjb.net 2
θ
θ
hypotenuse
hypotenuse
opposite
adjacent
adjacent
opposite
Maths Extension 1 – Trigonometry
Exact Values & Triangles
0° 30° 60° 45° 90° 180°
sin
0
2
1
2
3
2
1
1 0
cos
1
2
3
2
1
2
1
0 –1
tan
0
3
1
3
1 –– 0
cos
ec –– 2
3
2
2
1 ––
sec
1
3
2
2
2
–– –1
cot
––
3
3
1
1 0 ––
Trigonometric Identities
θθ
22
cossin +
= 1
θ
2
cos
=
θ
2
sin1−
θ
2
sin
=
θ
2
cos1−
θ
2
cot1+
= cosec
2
θ
θ
2
cot
= cosec
2
θ
– 1
1 = cosec
2
θ
–
θ
2
cot
1tan
2
+
θ
=
θ
2
sec
θ
2
tan
=
1sec
2
−
θ
1 =
θθ
22
tansec −
http://fatmuscle.cjb.net 3
1
1
2
45°
3
1
2
30°
60°
Maths Extension 1 – Trigonometry
ASTC Rule
First Quadrant: All positive
θ
sin
θ
sin
+
θ
cos
θ
cos
+
θ
tan
θ
tan
+
Second Quadrant: Sine positive
( )
θ
−°180sin
θ
sin
+
( )
θ
−°180cos
–
θ
cos
–
( )
θ
−°180tan
–
θ
tan
–
Third Quadrant: Tangent positive
( )
θ
+°180sin
–
θ
sin
–
( )
θ
+°180cos
–
θ
cos
–
( )
θ
+°180tan
θ
tan
+
Fourth Quadrant: Cosine positive
( )
θ
−°360sin
–
θ
sin
–
( )
θ
−°360cos
θ
cos
+
( )
θ
−°360tan
–
θ
tan
–
http://fatmuscle.cjb.net 4
°
°
360
0
90°
180°
270°
S A
T C
1
st
Quadrant
4
th
Quadrant
2
nd
Quadrant
3
rd
Quadrant
Maths Extension 1 – Trigonometry
Trigonometric Graphs
Sine & Cosine Rules
Sine Rule:
C
c
B
b
A
a
sinsinsin
==
OR
c
C
b
B
a
A sinsinsin
==
Cosine Rule:
Abccba cos2
222
−+=
http://fatmuscle.cjb.net 5
A
B
C
a
b
c
A
a
b
c
Maths Extension 1 – Trigonometry
Area of a Triangle
CabA sin
2
1
=
C is the angle
a
&
b
are the two adjacent sides
http://fatmuscle.cjb.net 6
C
b
a
Maths Extension 1 – Trigonometry
Trigonometric Equations
Check the domain eg.
°≤≤° 3600
θ
Check degrees (
°≤≤° 3600
θ
) or radians (
πθ
20 ≤≤
)
If double angle, go 2 revolutions
If triple angle, go 3 revolutions, etc…
If half angles, go half or one revolution (safe side)
Example 1
Solve sin θ =
2
1
for
°≤≤° 3600
θ
θ
sin
=
2
1
θ
= 30°, 150°
Example 2
Solve cos 2θ =
2
1
for
°≤≤° 3600
θ
θ
2cos
=
2
1
θ
2
= 60°, 300°, 420°, 660°
θ
= 30°, 150°, 210°, 330°
Example 3
Solve tan
2
θ
= 1 for
°≤≤° 3600
θ
tan
2
θ
= 1
2
θ
= 45°, 225°
θ
= 90°
Example 4
0cos2sin =+
θθ
θθθ
coscossin2 +
= 0
( )
1sin2cos +
θθ
= 0
θ
cos
= 0
θ
sin
=
2
1
−
θ
= 90°,
270°
θ
= 210°,
330°
Example 5
22cossin3 −=−
θθ
( )
θθ
2
sin21sin3 −−
= –2
1sin3sin2
2
++
θθ
= 0
http://fatmuscle.cjb.net 7
Maths Extension 1 – Trigonometry
( )( )
1sin1sin2 ++
θθ
= 0
θ
sin
=
2
1
−
θ
sin
= –1
θ
= 210°,
330°
θ
= 270°
http://fatmuscle.cjb.net 8
Maths Extension 1 – Trigonometry
Sums and Differences of angles
( )
βα
+sin
=
βαβα
sincoscossin +
( )
βα
−sin
=
βαβα
sincoscossin −
( )
βα
+cos
=
βαβα
sinsincoscos −
( )
βα
−cos
=
βαβα
sinsincoscos +
( )
βα
+tan
=
βα
βα
tantan1
tantan
−
+
( )
βα
−tan
=
βα
βα
tantan1
tantan
+
−
Double Angles
θ
2sin
=
θθ
cossin2
θ
2cos
=
θθ
22
sincos −
=
θ
2
sin21−
=
1cos2
2
−
θ
θ
2tan
=
θ
θ
2
tan21
tan2
−
θ
2
sin
=
( )
θ
2cos1
2
1
−
θ
2
cos
=
( )
θ
2cos1
2
1
+
Triple Angles
θ
3sin
=
θθ
3
sin4sin3 −
θ
3cos
=
θθ
cos3cos4
3
−
θ
3tan
=
θ
θθ
2
3
tan31
tantan3
−
−
Half Angles
θ
sin
=
22
cossin2
θθ
θ
cos
=
2
2
2
2
sincos
θθ
−
=
2
2
sin21
θ
−
=
1cos2
2
2
−
θ
http://fatmuscle.cjb.net 9
Maths Extension 1 – Trigonometry
θ
tan
=
2
2
2
tan21
tan2
θ
θ
−
http://fatmuscle.cjb.net 10
[...]... http://fatmuscle.cjb.net 13 Maths Extension 1 – Trigonometry General Solutions of Trigonometric Equations sin θ = sin α Then θ = nπ + (−1) nα cosθ = cosα Then θ = 2nπ ± α tan θ = tan α Then θ = nπ + α Radians πc = 180° 1° = πc 180 Arcs, Sectors, Segments Arc Length l = rθ l θ r Area of Sector A = 1 r 2θ 2 θ r http://fatmuscle.cjb.net 14 Maths Extension 1 – Trigonometry Area of Segment A = 1 r 2 (θ − sin... d ( tan(ax + b) ) dx = a sec 2 (ax + b) d sec x dx = sec x tan x d cos ecx dx = − cot x cos ecx = − cos ec 2 x d cot x dx http://fatmuscle.cjb.net 16 Maths Extension 1 – Trigonometry http://fatmuscle.cjb.net 17 Maths Extension 1 – Trigonometry Integration of Trigonometric Functions ∫ cos ax dx = 1 sin ax + c a ∫ sin ax dx = 1 − cos ax + c a ∫ sec = 1 tan ax + c a = x sin −1 + c a = x ... 2 + sin 2 θ 2 2 θ cos 2 = = 2t 1+ t 2 1− t 2 1+ t 2 = becomes tan sin θ cosθ = sin cos 2t 1− t2 1 − tan 2 θ 2 1 + tan 2 θ 2 = tan θ cancel; 1− t2 1+ t2 http://fatmuscle.cjb.net 12 Maths Extension 1 – Trigonometry Subsidiary Angle Formula a sin x + b cos x a b = = = = R (sin x cos x + cos x sin x ) R sin x cos x + R cos x sin x ∴ a2 R cos x = = R 2 cos 2 x ∴ b2 R 2 sin 2 x a 2 + b2 sin 2 x + cos 2 x...Maths Extension 1 – Trigonometry Deriving the Triple Angles sin 3θ = sin ( 2θ + θ ) = sin 2θ cosθ + cos 2θ sin θ = 2 sin θ cosθ cosθ + (1 − 2 sin 2 θ ) sin θ = 2 sin θ cos2 θ + sin θ − 2 sin 3 θ = 2 sin θ (1 − sin 2 θ ) +... l θ r Area of Sector A = 1 r 2θ 2 θ r http://fatmuscle.cjb.net 14 Maths Extension 1 – Trigonometry Area of Segment A = 1 r 2 (θ − sin θ ) 2 Segment θ r http://fatmuscle.cjb.net 15 Maths Extension 1 – Trigonometry Trigonometric Limits lim x →0 sin x x = lim x→0 tan x x = lim cos x x→0 =1 Differentiation of Trigonometric Functions d ( sin x ) dx = cos x d [ sin f ( x)] dx = f ' ( x) cos f ( x) d ( sin(ax... θ + tan θ 1− tan 2 θ tan θ 1 − 2 1− tan tan θ 2 θ 2 tan θ + tan θ − tan 3 θ 1− tan 2 θ 1− tan 2 θ − 2 tan 2 θ 1− tan 2 θ 3 3 tan θ − tan θ 1 − 3 tan 2 θ http://fatmuscle.cjb.net 11 Maths Extension 1 – Trigonometry T – Formulae Let t = tan θ2 sin θ cosθ = = = tan θ sin θ = = 2t 1+ t2 1− t2 1+ t2 2t 1− t2 2 sin θ cos θ 2 2 θ 2 2 sin cos cos 2 θ + sin 2 Using half angles _ Divide by “1” θ 2 2 θ 2 sin 2... 1 − cot ax + c a ∫ sec ax tan ax dx = 1 sec ax + c a ∫ ax dx 1 a −x 2 dx 2 1 ∫− ∫a 2 a −x 2 2 1 + x2 2 dx dx 2 ∫ cos ecax.cot ax dx = 1 − cos ecax + c a http://fatmuscle.cjb.net 18 Maths Extension 1 – Trigonometry Integration of sin2x and cos2x cos 2 x = 2 cos2 x − 1 cos 2 x + 1 = 2 cos2 x 1 ( cos 2 x + 1) = cos2 x 2 2 = 1 ∫ ( cos 2 x + 1) dx 2 ∫ cos x dx 1 1 = 2 ( 2 sin 2 x + x ) + C = 1 sin 2 x +... sin 2 x + C 4 = 1 − sin 2 x = 1 − cos 2 x = 1 (1 − cos 2 x ) 2 1 = 2 ∫ (1 − cos 2 x ) dx = 1 ( x − 1 sin 2 x ) + C 2 2 1 1 = 2 x − 4 sin 2 x + C ∫ sin 2 http://fatmuscle.cjb.net 19 Maths Extension 1 – Trigonometry INVERSE TRIGNOMETRY Inverse Sin – Graph, Domain, Range, Properties y −1 ≤ x ≤ 1 π 2 x -2 − 2 π π ≤y≤ 2 2 −π 2 sin −1 (− x) = − sin −1 x Inverse Cos – Graph, Domain, Range, Properties y −1... x -1 0 1 cos −1 (− x) = π − cos −1 x Inverse Tan – Graph, Domain, Range, Properties y 2 π 2 x − −π 2 -2 All real x π π ≤y≤ 2 2 tan −1 (− x) = − tan −1 x http://fatmuscle.cjb.net 20 Maths Extension 1 – Trigonometry Differentiation of Inverse Trigonometric Functions ( ) = ( ) = d sin −1 x dx d x sin −1 a dx ( d sin −1 f ( x) dx ) 1 1 − x2 1 a − x2 2 f ' ( x) = 1 − [ f ( x)]2 ( ) = − ( ) = − = − d cos... 1 − x2 1 a2 − x2 f ' ( x) 1 − [ f ( x)]2 ( ) = 1 1 + x2 ( ) = a a + x2 = f ' ( x) a + [ f ( x)]2 d tan −1 x dx d x tan −1 a dx ( d tan −1 f ( x) dx ) 2 http://fatmuscle.cjb.net 21 Maths Extension 1 – Trigonometry Integration of Inverse Trigonometric Functions ∫ 1 a −x 2 1 ∫− ∫a dx 2 a2 − x2 2 1 + x2 dx dx = x sin −1 + c a = x x cos −1 + c OR − sin −1 + c a a = 1 x tan