Luận án Tiến sĩ Nghiên cứu cấu trúc và tính chất một số hệ vòng ngưng tụ chứa lưu huỳnh và silic ứng dụng trong chế tạo vật liệu quang điện

148 24 0
Luận án Tiến sĩ Nghiên cứu cấu trúc và tính chất một số hệ vòng ngưng tụ chứa lưu huỳnh và silic ứng dụng trong chế tạo vật liệu quang điện

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI - TRẦN NGỌC DŨNG Nghiên cứu cấu trúc tính chất số hệ vòng ngưng tụ chứa lưu huỳnh silic ứng dụng chế tạo vật liệu quang điện LUẬN ÁN TIẾN SĨ Hà Nội - 2022 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI - TRẦN NGỌC DŨNG Nghiên cứu cấu trúc tính chất số hệ vòng ngưng tụ chứa lưu huỳnh silic ứng dụng chế tạo vật liệu quang điện Chuyên ngành: Hóa lý thuyết Hóa lý Mã số: 9440119 Người hướng dẫn khoa học : PGS.TS Nguyễn Thị Minh Huệ PGS.TS Nguyễn Hiển Hà Nội - 2022 i LỜI CAM ĐOAN Tôi xin cam đoan luận án kết nghiên cứu cá nhân Các số liệu tài liệu trích dẫn luận án thực cách trung thực Kết nghiên cứu không trùng với công trình cơng bố trước Tơi xin chịu trách nhiệm với lời cam đoan Hà Nội, tháng năm 2022 Nghiên cứu sinh Trần Ngọc Dũng ii LỜI CẢM ƠN ===**=== Trước tiên, em xin bày tỏ lòng biết ơn sâu sắc trân trọng tới cô PGS.TS Nguyễn Thị Minh Huệ thầy PGS.TS Nguyễn Hiển bảo, hướng dẫn, động viên giúp đỡ em tận tình suốt thời gian thực hoàn thành luận án Em xin chân thành cảm ơn hỗ trợ nhiệt tình NCS Nguyễn Văn Tráng, Viện Kỹ thuật nhiệt đới, Viện Hàn lâm Khoa học Công nghệ Việt Nam suốt thời gian em hoàn thành luận án Em xin tỏ lòng biết ơn sâu sắc chân thành đến toàn thể Thầy, Cơ Bộ mơn Hóa lý thuyết Hóa lý Bộ Mơn Hố học Hữu Thầy, Cô, anh chị làm việc Trung tâm Khoa học tính tốn, Trường Đại học Sư phạm Hà Nội tạo điều kiện cho em trình thực đề tài Cuối cùng, em xin gửi lời biết ơn sâu sắc tới người thân gia đình ln động viên hỗ trợ em để em tập trung trí lực hồn thành luận án Xin trân trọng cảm ơn! Hà Nội, tháng năm 2022 Nghiên cứu sinh Trần Ngọc Dũng iii MỤC LỤC MỤC LỤC iii DANH MỤC CÁC KÍ HIỆU VIẾT TẮT v MỤC LỤC HÌNH ẢNH vii MỤC LỤC BẢNG x MỞ ĐẦU 1 Lý chọn đề tài .1 Mục đích, nhiệm vụ nghiên cứu 3 Đối tượng phạm vi nghiên cứu .3 Ý nghĩa khoa học thực tiễn luận án Những điểm luận án CHƯƠNG 1: TỔNG QUAN 1.1 Cơ sở lý thuyết về vật liệu quang điện hữu .5 1.1.1 Cấu tạo chế hoạt động đi-ốt phát quang hữu .5 1.1.2 Cấu tạo chế hoạt động pin mặt trời chất màu nhạy quang .11 1.2 Cơ sở lý thuyết hoá học lượng tử 16 1.3 Cơ sở lý thuyết phản ứng Heck 19 1.4 Hệ chất nghiên cứu 22 1.4.1 Hệ chất ngưng tụ chứa lưu huỳnh 22 1.4.2 Hệ chất ngưng tụ chứa silic 28 1.4.3 Tình hình nghiên cứu hợp chất ngưng tụ chứa lưu huỳnh .33 1.4.4 Tình hình nghiên cứu hợp chất ngưng tụ chứa silic 36 CHƯƠNG 2: PHƯƠNG PHÁP NGHIÊN CỨU 39 2.1 Phương pháp nghiên cứu lý thuyết 39 2.1.1 Phương pháp phiếm hàm mật độ 39 2.1.2 Phương pháp phiếm hàm mật độ phụ thuộc thời gian 43 2.1.3 Bộ hàm sở 45 2.1.4 Khả truyền dẫn điện tích 45 2.1.5 Phương pháp tính tốn hóa học lượng tử 46 2.2 Phương pháp nghiên cứu thực nghiệm 47 2.2.1 Hóa chất 48 iv 2.2.2 Dụng cụ thiết bị 48 2.2.3 Quy trình phản ứng alkenyl hóa BDT 48 2.2.4 Phân tích cấu trúc sản phẩm 49 CHƯƠNG 3: KẾT QUẢ NGHIÊN CỨU VÀ THẢO LUẬN 50 3.1 Hệ chất ngưng tụ chứa lưu huỳnh 50 3.1.1 Nghiên cứu cấu trúc tính chất hợp chất lưỡng cực dựa dibenzothiophene ứng dụng làm vật liệu chất mang OLED hệ thứ hai 50 3.1.2 Tổng hợp 2-Alkenylbenzo[1,2-b:4,5-b’]dithiophene hệ xúc tác Pd/Cu/Ag nghiên cứu cấu trúc phương pháp phổ thực nghiệm tính tốn lý thuyết .61 3.1.3 Thiết kế hệ chất bithiophene liên hợp chứa silole số dị vòng năm cạnh cho vật liệu quang điện 69 3.2 Hệ ngưng tụ chứa silic 94 3.2.1 Nghiên cứu cấu trúc tính chất quang điện số dẫn suất dithienosilole 94 3.2.2 Nghiên cứu lý thuyết ảnh hưởng cầu nối π hệ chất hữu dạng D-π-A ứng dụng cho pin mặt trời polymer 111 KẾT LUẬN CHUNG 120 ĐỊNH HƯỚNG NGHIÊN CỨU TIẾP THEO 121 DANH MỤC CƠNG TRÌNH ĐÃ CÔNG BỐ 122 TÀI LIỆU THAM KHẢO .123 v DANH MỤC CÁC KÍ HIỆU VIẾT TẮT Viết tắt HOMO Nguyên tiếng Anh Highest occupied molecular Tạm dịch Orbital phân tử bị chiếm cao orbital Lowest unoccupied molecular Orbital phân tử không bị chiếm thấp orbital OLED Organic light emitting diode Đi-ốt phát quang hữu DSSC Dye sensitized solar cell Pin mặt trời chất màu nhạy quang OPV Organic photovoltaics Quang điện hữu OFET Organic field effect transistor Transistor hiệu ứng trường hữu OTFT Organic thin-film transistor Transistor màng mỏng hữu OSC Organic semiconductors Chất bán dẫn hữu AIE Aggregation induced emission Phát xạ tập hợp ACQ Aggregation caused quench Dập tắt tập hợp HBMC Heteronuclear Multiple Bond Phổ tương quan liên kết LUMO Correlation HSQC Heteronuclear Single Phổ tương quan lượng tử đơn nhân Quantum Coherence DFT Density functional theory Thuyết phiếm hàm mật độ TD-DFT Time-dependent density Thuyết phiếm hàm mật độ phụ thuộc functional theory thời gian TTA Triplet-triplet annihilation Triệt tiêu triplet-triplet HLCT Hybridized local and charge Lai hoá cục chuyển điện tích transfer TADF Thermally activated delayed Huỳnh quang trễ hoạt hóa nhiệt fluorescence IQE Internal quantum efficiency Hiệu suất lượng tử nội EQE External quantum efficiency Hiệu suất lượng tử ngoại vi PLQE Photoluminescence quantum Hiệu suất phát quang lượng tử efficiency SOMO Singly occupied molecular Orbital phân tử singlet bị chiếm orbital Singly unoccupied molecular Orbital phân tử singlet không bị orbital chiếm LDA Local density approximation Xấp xỉ mật độ địa phương GGA Generalized gradient Gradient tổng quát SUMO approximation EA Electron affinity Ái lực electron IP Ionization potential Thế oxi hoá EHOMO HOMO energy Năng lượng HOMO ELUMO LUMO energy Năng lượng LUMO Egap Band-gap energy Năng lượng HOMO-LUMO S0 Singlet ground state Trạng thái singlet S1 First singlet excited state Trạng thái kích thích singlet thứ T1 First triplet excited state Trạng thái kích thích triplet thứ ES0 Singlet ground state energy Năng lượng trạng thái singlet ES1 First singlet excited state Năng lượng trạng thái kích thích energy singlet thứ First triplet excited state Năng lượng trạng thái kích thích energy triplet thứ λh Hole reorganization energy Năng lượng tái tổ hợp cho electron λe Electron reorganization Năng lượng tái tổ hợp cho lỗ trống ET1 energy λabs Absortion wavelength Bước sóng hấp thụ λem Emission wavelength Bước sóng phát xạ vii MỤC LỤC HÌNH ẢNH Hình 1.1: Cấu tạo điốt phát quang đại .6 Hình 1.2: Cơ chế phát huỳnh quang vật liệu hữu cơ: a) Huỳnh quang thông thường; b) Triệt tiêu triplet-triplet; c) Lai hoá cục vận chuyển điện tích; d) Huỳnh quang trễ hoạt hố nhiệt .8 Hình 1.3: Cấu hình spin a) phân tử vỏ đóng b) phân tử vỏ mở trạng thái kích thích 10 Hình 1.4: Sơ đồ cấu tạo pin mặt trời chất màu nhạy quang 12 Hình 1.5: Cấu trúc chất màu N3 (bên trái) N719 (bên phải) 15 Hình 1.6: Sơ đồ phản ứng Heck 20 Hình 1.7: Cơ chế phản ứng Heck đề xuất Carbi Candiani 21 Hình 1.8: Cấu tạo phân tử thiophene 22 Hình 1.9: Một số cấu trúc ngưng tụ chứa thiophene 23 Hình 1.10: Cấu tạo hợp chất gốc M0 25 Hình 1.11: Cấu trúc chất màu nhạy quang chứa BDT 26 Hình 1.12: Cấu trúc dẫn xuất BDT sử dụng thiết bị quang điện .26 Hình 1.13: Cấu trúc hệ chất bithiophene 28 Hình 1.14: Cấu tạo phân tử silole 29 Hình 1.15: Cấu trúc hệ chất dị vòng ngưng tụ dithienosilole 30 Hình 1.16: Cấu trúc phân tử PBDTS-TZNT 33 Hình 1.17: Cấu trúc hợp chất dithiophene dibenzothiophene 34 Hình 1.18: Cấu trúc polymer chứa thiophene .35 Hình 1.19: Cấu trúc hợp chất dithiophene ứng dụng DSSC 36 Hình 1.20: Một số hợp chất ngưng tụ chứa silic ứng dụng làm vật liệu phát xạ …………………………………………………………………………………… 38 Hình 1.21: Một số hợp chất ngưng tụ chứa silic ứng dụng làm vật liệu truyền dẫn điện tích ……………………………………………………………………….38 Hình 2.1: Sơ đồ phản ứng alkenyl hóa BDT ………………………………………49 viii Hình 3.1: Cấu trúc hợp chất nghiên cứu dựa nhóm Cz, DBTa DBTb cấu trúc hợp chất tham khảo gồm CBP, Firpic, NPB Bphen đóng vai trò chất mang, vật liệu phát xạ, vật liệu vận chuyển lỗ trống vận chuyển electron 50 Hình 3.2: Hình ảnh mức lượng HOMO LUMO hợp chất nghiên cứu hợp chất tham chiếu (eV) a) Đối với hợp chất Cz1-Cz7; b) Đối với hợp chất D1a-D7a; c) Đối với hợp chất D1b-D7b 53 Hình 3.3: Đồ thị IP EA hợp chất nghiên cứu so sánh với hợp chất tham chiếu (eV) .59 Hình 3.4: Sơ đồ tổng hợp hiệu suất 61 Hình 3.5: Cấu dạng hai đồng phân 3a-A 3a-B 61 Hình 3.6: Phổ HSQC (bên trái) phổ HMBC (bên phải) hợp chất 3a 64 Hình 3.7: Phổ NOESY 3a 65 Hình 3.8: Hình ảnh HOMO LUMO với mức lượng HOMO, LUMO Egap hợp chất (eV) .68 Hình 3.9: Cấu trúc hợp chất bithiophene nghiên cứu 70 Hình 3.10: Góc nhị nhiện hợp chất DTSPh dạng trung hoà, anion cation 74 Hình 3.11: Độ dài cầu nối hợp chất DTSPh dạng trung hoà, anion cation 74 Hình 3.12: Hình dạng mức lượng HOMO, LUMO hợp chất (eV) a) CPDT; b) DTP; c) DTSH; d) DTSMe; e) DTT; f) DTSPh .78 Hình 3.13: Phổ hấp thụ mô hợp chất tính tốn TDB3LYP/6-31G(d, p) với mơ hình PCM dung môi THF: a) CPDT; b) DTP; c) DTSH; d) DTSMe; e) DTT; f) DTSPh 88 Hình 3.14: Phổ phát xạ hợp chất thu từ tính tốn TD-DFT/B3LYP/631G (d, p) với mơ hình PCM dung mơi THF a) CPDT; b) DTP; c) DTSH; d) DTSMe; e) DTT; f) DTSPh .93 Hình 3.15: Cấu trúc hợp chất hệ dithienosilole 95 Hình 3.16: Mức lượng HOMO LUMO hợp chất CBP, DTS hợp chất 1-11 100 121 - Đã nghiên cứu cách hệ thống dẫn xuất dithienosilole, kết cho thấy hợp chất có khả vận chuyển điện tích tốt, thích hợp sử dụng làm vật liệu truyền dẫn thiết bị OLED, đặc biệt hợp chất dạng dime - Kết tính tốn hợp chất DTS hệ chất nghiên cứu có giá trị Egap 2,5 eV, thấp so với 2,7 hợp chất gốc tổng hợp trước đó; Các giá trị λh, λe 0,23 0,21, tương đồng so với 0,23 0,21 hợp chất gốc, đồng thời phổ hấp thụ có bước chuyển dịch đỏ cường độ hấp thụ cao ĐỊNH HƯỚNG NGHIÊN CỨU TIẾP THEO Từ kết nghiên cứu, kiến nghị hướng nghiên cứu tập trung vào số nội dung sau: Mở rộng nghiên cứu tính chất cấu trúc dị vòng ngưng tụ khác nhằm ứng dụng chế tạo vật liệu quang điện hữu dị vòng khác dị vòng chứa borole, nitrogen Tiến hành tổng hợp ghép thêm hợp phần nhận electron cho hệ chất BDT (hệ chất 2) để tạo nên hợp chất dạng D-π-A hoàn chỉnh Tổng hợp hợp chất PBDTSTZNT với cầu nối dị vòng DTS hệ chất thứ Tổng hợp hợp chất D3a D3b hệ chất thứ để chế tạo thiết bị OLED Trên sở hợp chất tổng hợn, tiến hành chế tạo thiết bị DSSC OLED tương ứng, từ khảo sát tính chất về phổ, trình hoạt động thiết bị so sánh với kết tính tốn lý thuyết thực 122 DANH MỤC CƠNG TRÌNH ĐÃ CÔNG BỐ 1) Nguyen Van Trang, Tran Ngoc Dung, Tran Thi Thoa, Dinh Thi Mai Thanh, and Nguyen Thi Minh Hue "Stability and Semi‐Conductive Property of Some Derivatives of Mono‐and Di‐Silole: A Theoretical Study." Vietnam Journal of Chemistry 57, no (2019): 507-13 2) Tran Ngoc Dung, Nguyen Van Trang, Dinh Thi Mai Thanh, Nguyen Thi Van Khanh, Hien Nguyen, and Hue Minh Thi Nguyen "A Facile Regioselectively Synthesis of 2-Alkenylbenzo [1, 2-B: 4, 5-B’] Dithiophene by Pd/Cu/Ag-Catalyzed Ch Functionalization." ChemistrySelect 5, no 19 (2020): 5581-86 3) Tran Ngoc Dung, Nguyen Van Trang, Tran Thi Thoa, Phan Thi Thuy, Dinh Thi Mai Thanh, and Nguyen Thi Minh Hue "Theoretical Study of Structures and Properties of Some Silole Compounds." Vietnam Journal of Chemistry 58, no (2020): 212-20 4) Nguyen Van Trang, Tran Ngoc Dung, Ngo Tuan Cuong, Le Thi Hong Hai, Daniel Escudero, Minh Tho Nguyen, and Hue Minh Thi Nguyen "Theoretical Study of a Class of Organic D-Π-a Dyes for Polymer Solar Cells: Influence of Various ΠSpacers." Crystals 10, no (2020): 163 5) Nguyen Van Trang, Tran Ngoc Dung, Long Van Duong, My Phuong PhamHo, Hue Minh Thi Nguyen, and Minh Tho Nguyen "Structural, Electronic, and Optical Properties of Some New Dithienosilole Derivatives." Structural Chemistry 31, no (2020): 2215-25 6) Nguyen Van Trang, Nguyen Minh Tam, Tran Ngoc Dung, and Minh Tho Nguyen "A Theoretical Design of Bipolar Host Materials for Blue Phosphorescent Oled." Journal of Molecular Graphics and Modelling 105 (2021): 107845 7) Hue Minh Thi Nguyen, Tran Ngoc Dung, Nguyen Van Trang, Ngo Tuan Cuong, Nguyen Van Minh, Hien Nguyen, and Minh Tho Nguyen "Design of Fused Bithiophene Systems Containing Silole and Five-Membered Heterocycles for Optoelectronic Materials." Chemical Physics Letters 784 (2021): 139093 123 TÀI LIỆU THAM KHẢO 10 11 12 13 14 15 16 Coe, Seth, et al (2002), "Electroluminescence from single monolayers of nanocrystals in molecular organic devices", Nature 420(6917), pp 800-803 Malliaras, George and Friend, Richard (2005), "An organic electronics primer", Physics Today 58(5), pp 53-58 McGinness, John, Corry, Peter, and Proctor, Peter (1974), "Amorphous semiconductor switching in melanins", Science 183(4127), pp 853-855 Shirakawa, Hideki, et al (1977), "Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene,(CH) x", Journal of the Chemical Society, Chemical Communications(16), pp 578-580 Diaz, Arturo F, Kanazawa, K Keiji, and Gardini, Gian Piero (1979), "Electrochemical polymerization of pyrrole", Journal of the Chemical Society, Chemical Communications(14), pp 635-636 Myers, Jason D and Xue, Jiangeng (2012), "Organic semiconductors and their applications in photovoltaic devices", Polymer Reviews 52(1), pp 1-37 Dimitrakopoulos, Christos D and Mascaro, Debra J (2001), "Organic thin-film transistors: A review of recent advances", IBM Journal of research and development 45(1), pp 11-27 Warta, Wilhelm and Karl, Norbert (1985), "Hot holes in naphthalene: High, electric-field-dependent mobilities", Physical Review B 32(2), p 1172 Torruellas, WE, et al (1990), "Dispersion measurements of the third-order nonlinear susceptibility of polythiophene thin films", Chemical physics letters 175(1-2), pp 11-16 Musher, JI (1969), "The chemistry of hypervalent molecules", Angewandte Chemie International Edition in English 8(1), pp 54-68 Gillespie, Ronald J and Silvi, Bernard (2002), "The octet rule and hypervalence: two misunderstood concepts", Coordination Chemistry Reviews 233, pp 53-62 Dell, Emma J, et al (2015), "Molecular length dictates the nature of charge carriers in single-molecule junctions of oxidized oligothiophenes", Nature chemistry 7(3), p 209 Ghofraniha, N, et al (2015), "Experimental evidence of replica symmetry breaking in random lasers", Nature communications 6(1), pp 1-8 Wang, Yan, et al (2005), "Conjugated silole and carbazole copolymers: Synthesis, characterization, single‐layer light‐emitting diode, and field effect carrier mobility", Macromolecular Chemistry Physics Today 206(21), pp 2190-2198 Mi, Baoxiu, et al (2005), "Making silole photovoltaically active by attaching carbazolyl donor groups to the silolyl acceptor core", Chemical communications(28), pp 3583-3585 Zhan, Xiaowei, Barlow, Stephen, and Marder, Seth R (2009), "Substituent effects on the electronic structure of siloles", Chemical communications(15), pp 1948-1955 124 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Fu, Huiying and Cheng, Yuanrong (2012), "Electroluminescent and photovoltaic properties of silole-based materials", Current Organic Chemistry 16(11), pp 1423-1446 Reese, Colin, et al (2004), "Organic thin film transistors", Materials today 7(9), pp 20-27 Tsujimura, Takatoshi (2017), OLED display fundamentals and applications, John Wiley & Sons Park, JW, Shin, DC, and Park, SH (2011), "Large-area OLED lightings and their applications", Semiconductor Science and Technology 26(3), p 034002 Wei, X, et al (1992), "Studies of photoexcited states in polyacetylene and poly (paraphenylenevinylene) by absorption detected magnetic resonance: The case of neutral photoexcitations", Physical review letters 68(5), p 666 Goudsmit, Gert Hein, Paul, Henning, and Shushin, Anatoly I (1993), "Electron spin polarization in radical-triplet pairs Size and dependence on diffusion", The Journal of Physical Chemistry 97(50), pp 13243-13249 Kawai, Akio and Obi, Kinichi (1992), "First observation of a radical-triplet pair mechanism (RTPM) with doublet precursor", The Journal of Physical Chemistry 96(1), pp 52-56 Kawai, A and Obi, K (1993), "A new mechanism of electron spin polarization generation through radical-excited molecule interactions", Research on chemical intermediates 19(9), pp 865-894 Steren, Carlos A, van Willigen, Hans, and Fanciulli, Marco (1995), "Photoinduced spin polarization of paramagnetic centers in solid C60", Chemical physics letters 245(2-3), pp 244-248 Bobbert, PA, et al (2007), "Bipolaron mechanism for organic magnetoresistance", Physical Review Letters 99(21), p 216801 Zubrilov, AS, et al (2002), "Optical properties of GaN grown on Si (111) by gas source molecular beam epitaxy with ammonia", Journal of applied physics 91(3), pp 1209-1212 Leroux, M, et al (1999), "Temperature quenching of photoluminescence intensities in undoped and doped GaN", Journal of Applied Physics 86(7), pp 3721-3728 Reufer, Martin, et al (2005), "Spin-conserving carrier recombination in conjugated polymers", Nature Materials 4(4), pp 340-346 Bimberg, D, Sondergeld, M, and Grobe, E (1971), "Thermal dissociation of excitons bounds to neutral acceptors in high-purity GaAs", Physical Review B 4(10), p 3451 Graupner, W, et al (1996), "Dynamics of long-lived polarons in poly (paraphenylene)-type ladder polymers", Physical review letters 77(10), p 2033 Pope, Martin and Swenberg, Charles E (1999), Electronic processes in organic crystals and polymers, Vol 39, Oxford University Press on Demand 125 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 Arakane, Takashi, et al (2006), 5.1: Fluorescent RGB OLEDs with High Performance, SID Symposium Digest of Technical Papers, Wiley Online Library, pp 37-40 Uoyama, Hiroki, et al (2012), "Highly efficient organic light-emitting diodes from delayed fluorescence", Nature 492(7428), pp 234-238 Peng, Qiming, et al (2015), "Organic light‐emitting diodes using a neutral π radical as emitter: the emission from a doublet", Angewandte Chemie 127(24), pp 7197-7201 Turro, Nicholas J (1991), Modern molecular photochemistry, University science books Ma, Yuguang, et al (1998), "Electroluminescence from triplet metal—ligand charge-transfer excited state of transition metal complexes", Synthetic Metals 94(3), pp 245-248 Baldo, Marc A, et al (1998), "Highly efficient phosphorescent emission from organic electroluminescent devices", Nature 395(6698), pp 151-154 Yang, Xiaolong, Zhou, Guijiang, and Wong, Wai-Yeung (2015), "Functionalization of phosphorescent emitters and their host materials by main-group elements for phosphorescent organic light-emitting devices", Chemical Society Reviews 44(23), pp 8484-8575 Wei, Qiang, et al (2018), "Small‐Molecule Emitters with High Quantum Efficiency: Mechanisms, Structures, and Applications in OLED Devices", Advanced Optical Materials 6(20), p 1800512 Xie, Feng-Ming, et al (2018), "Two novel blue phosphorescent host materials containing phenothiazine-5, 5-dioxide structure derivatives", Beilstein journal of organic chemistry 14(1), pp 869-874 Seo, Jeong-A, et al (2015), "Long lifetime blue phosphorescent organic lightemitting diodes with an exciton blocking layer" 3(18), pp 4640-4645 Varathan, E, Vijay, Dolly, and Subramanian, V (2014), "Rational design of carbazole-and carboline-based ambipolar host materials for blue electrophosphorescence: a density functional theory study", The Journal of Physical Chemistry C 118(38), pp 21741-21754 Varathan, E, Vijay, Dolly, and Subramanian, V (2016), "Quantum chemical design of carbazole-and pyridoindole-based ambipolar host materials for blue phosphorescent OLEDs", RSC advances 6(78), pp 74769-74784 O'regan, Brian and Grätzel, Michael (1991), "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO films", nature 353(6346), pp 737-740 Feng, Kui, et al (2019), "Low-energy-loss polymer solar cells with 14.52% efficiency enabled by wide-band-gap copolymers", Iscience 12, pp 1-12 Kim, Sanghoon, et al (2006), "Molecular engineering of organic sensitizers for solar cell applications" 128(51), pp 16701-16707 126 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 Hagberg, Daniel P, et al (2007), "Tuning the HOMO and LUMO energy levels of organic chromophores for dye sensitized solar cells", The Journal of organic chemistry 72(25), pp 9550-9556 Hagberg, Daniel P, et al (2008), "Molecular engineering of organic sensitizers for dye-sensitized solar cell applications" 130(19), pp 6259-6266 Moon, Soo-Jin, et al (2009), "Highly efficient organic sensitizers for solidstate dye-sensitized solar cells" 113(38), pp 16816-16820 Kalyanasundaram, K and Grätzel, M (1998), "Applications of functionalized transition metal complexes in photonic and optoelectronic devices", Coordination chemistry reviews 177(1), pp 347-414 Hagfeldt, Anders, et al (2010), "Dye-sensitized solar cells", Chemical reviews 110(11), pp 6595-6663 Nazeeruddin, M Khaja, et al (1993), "Conversion of light to electricity by cisX2bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes", Journal of the American Chemical Society 115(14), pp 6382-6390 Nazeeruddin, Md K, Pechy, P, and Grätzel, M (1997), "Efficient panchromatic sensitization of nanocrystallineTiO2 films by a black dye based on atrithiocyanato–ruthenium complex", Chemical Communications(18), pp 1705-1706 Swetha, T, Reddy, K Raveendranath, and Singh, Surya Prakash (2015), "Osmium Polypyridyl Complexes and Their Applications to Dye‐Sensitized Solar Cells", The Chemical Record 15(2), pp 457-474 Li, Lu-Lin and Diau, Eric Wei-Guang (2013), "Porphyrin-sensitized solar cells", Chemical society reviews 42(1), pp 291-304 Higashino, Tomohiro and Imahori, Hiroshi (2015), "Porphyrins as excellent dyes for dye-sensitized solar cells: recent developments and insights", Dalton Transactions 44(2), pp 448-463 Walter, Michael G, Rudine, Alexander B, and Wamser, Carl C (2010), "Porphyrins and phthalocyanines in solar photovoltaic cells", Journal of Porphyrins Phthalocyanines 14(09), pp 759-792 Martín-Gomis, Luis, Fernández-Lázaro, Fernando, and Sastre-Santos, Ángela (2014), "Advances in phthalocyanine-sensitized solar cells (PcSSCs)", Journal of Materials Chemistry A 2(38), pp 15672-15682 Wang, Chin-Li, et al (2014), "Co-sensitization of zinc and free-base porphyrins with an organic dye for efficient dye-sensitized solar cells", The Journal of Physical Chemistry C 118(48), pp 27801-27807 Ooyama, Yousuke and Harima, Yutaka (2012), "Photophysical and electrochemical properties, and molecular structures of organic dyes for dye‐ sensitized solar cells", ChemPhysChem 13(18), pp 4032-4080 Zhang, Fan, et al (2009), "Triphenylamine-based dyes for dye-sensitized solar cells", Dyes Pigments 81(3), pp 224-230 127 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 Liang, Mao and Chen, Jun (2013), "Arylamine organic dyes for dye-sensitized solar cells", Chemical Society Reviews 42(8), pp 3453-3488 Zhang, Lei and Cole, Jacqueline M (2015), "Anchoring groups for dyesensitized solar cells", ACS applied materials interfaces 7(6), pp 3427-3455 Cramer, Christopher J (2013), Essentials of computational chemistry: theories and models, John Wiley & Sons Ullrich, Carsten A and Yang, Zeng-hui (2014), "A brief compendium of timedependent density functional theory", Brazilian Journal of Physics 44(1), pp 154-188 Zhou, Nanjia, et al (2015), "Metal-free tetrathienoacene sensitizers for highperformance dye-sensitized solar cells" 137(13), pp 4414-4423 Kumaresan, Prabakaran, et al (2014), "Fused-thiophene based materials for organic photovoltaics and dye-sensitized solar cells" 6(10), pp 2645-2669 Kitamura, Chitoshi, Tanaka, Shoji, and Yamashita, Yoshiro (1996), "Design of narrow-bandgap polymers Syntheses and properties of monomers and polymers containing aromatic-donor and o-quinoid-acceptor units", Chemistry of Materials 8(2), pp 570-578 Barbarella, Giovanna and Di Maria, Francesca (2015), "Supramolecular oligothiophene microfibers spontaneously assembled on surfaces or coassembled with proteins inside live cells", Accounts of chemical research 48(8), pp 2230-2241 Perepichka, Igor F and Perepichka, Dmitrii F (2009), Handbook of ThiopheneBased Materials: Applications in Organic Electronics and Photonics, Volume Set, John Wiley & Sons McCullough, Richard D (1998), "The chemistry of conducting polythiophenes", Advanced Materials 10(2), pp 93-116 Mishra, Amaresh, Ma, Chang-Qi, and Bauerle, Peter (2009), "Functional oligothiophenes: molecular design for multidimensional nanoarchitectures and their applications", Chemical reviews 109(3), pp 1141-1276 Cinar, Mehmet Emin and Ozturk, Turan (2015), "Thienothiophenes, dithienothiophenes, and thienoacenes: syntheses, oligomers, polymers, and properties", Chemical Reviews 115(9), pp 3036-3140 Turkoglu, Gulsen, Cinar, M Emin, and Ozturk, Turan (2019), "Thiophenebased organic semiconductors", Sulfur Chemistry, pp 79-123 Varathan, E and Subramanian, V (2017), "The role of sulfur oxidation in controlling the electronic properties of sulfur-containing host molecules for phosphorescent organic light-emitting diodes", Physical Chemistry Chemical Physics 19(19), pp 12002-12012 Liu, Xiao-Ke, et al (2012), "Novel bipolar host materials based on 1, 3, 5triazine derivatives for highly efficient phosphorescent OLEDs with extremely low efficiency roll-off", Physical Chemistry Chemical Physics 14(41), pp 14255-14261 128 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 Jeong, Sook Hee and Lee, Jun Yeob (2011), "Dibenzothiophene derivatives as host materials for high efficiency in deep blue phosphorescent organic light emitting diodes", Journal of Materials Chemistry 21(38), pp 14604-14609 Han, Chunmiao, et al (2012), "Short-axis substitution approach selectively optimizes electrical properties of dibenzothiophene-based phosphine oxide hosts" 134(46), pp 19179-19188 He, Jian, et al (2009), "Nonconjugated carbazoles: a series of novel host materials for highly efficient blue electrophosphorescent OLEDs" 113(16), pp 6761-6767 Bin, Jong‐Kwan, Cho, Nam‐Sung, and Hong, Jong‐In (2012), "New Host Material for High‐Performance Blue Phosphorescent Organic Electroluminescent Devices", Advanced materials 24(21), pp 2911-2915 Jeon, Soon Ok, et al (2011), "External quantum efficiency above 20% in deep blue phosphorescent organic light‐emitting diodes" 23(12), pp 1436-1441 Su, Shi‐Jian, et al (2008), "Highly efficient organic blue‐and white‐light‐ emitting devices having a carrier‐and exciton‐confining structure for reduced efficiency roll‐off" 20(21), pp 4189-4194 Tokito, Shizuo, et al (2003), "Confinement of triplet energy on phosphorescent molecules for highly-efficient organic blue-light-emitting devices" 83(3), pp 569-571 Holmes, RJ, et al (2003), "Blue organic electrophosphorescence using exothermic host–guest energy transfer" 82(15), pp 2422-2424 Huang, Hong, et al (2012), "Butterfly-shaped tetrasubstituted carbazole derivatives as a new class of hosts for highly efficient solution-processable green phosphorescent organic light-emitting diodes" 14(18), pp 4786-4789 Byeon, Sung Yong, et al (2018), "Carbazole-dibenzothiophene core as a building block of host materials for blue phosphorescent organic light-emitting diodes" 155, pp 114-120 Kim, Hyeong Min, Choi, Jeong Min, and Lee, Jun Yeob (2017), "Design of bicarbazole type host materials for long-term stability in blue phosphorescent organic light-emitting diodes", Organic Electronics 43, pp 130-135 Hou, Jianhui, et al (2008), "Bandgap and molecular energy level control of conjugated polymer photovoltaic materials based on benzo [1, 2-b: 4, 5-b′] dithiophene", Macromolecules 41(16), pp 6012-6018 Wang, Chao, et al (2014), "Thieno [3, 2‐b] thiophene‐Diketopyrrolopyrrole‐ Based Quinoidal Small Molecules: Synthesis, Characterization, Redox Behavior, and n‐Channel Organic Field‐Effect Transistors", Chemistry–A European Journal 20(42), pp 13755-13761 Yao, Huifeng, et al (2016), "Molecular design of benzodithiophene-based organic photovoltaic materials", Chemical reviews 116(12), pp 7397-7457 Longhi, Elena, et al (2013), "Metal-free benzodithiophene-containing organic dyes for dye-sensitized solar cells", Eur J Org Chem 2013, pp 84-94 129 93 94 95 96 97 98 99 100 101 102 103 104 105 106 Kan, Bin, et al (2014), "Solution-processed organic solar cells based on dialkylthiol-substituted benzodithiophene unit with efficiency near 10%", Journal of the American Chemical Society 136(44), pp 15529-15532 Zhang, Haiming, Ferreira, Eric M, and Stoltz, Brian M (2004), "Direct oxidative Heck cyclizations: Intramolecular Fujiwara–Moritani arylations for the synthesis of functionalized benzofurans and dihydrobenzofurans", Angewandte Chemie International Edition 43(45), pp 6144-6148 Solomatina, AI, et al (2015), "Cyclometallated platinum (II) complexes containing NHC ligands: synthesis, characterization, photophysics and their application as emitters in OLEDs", Dalton Transactions 44(16), pp 71527162 Luo, Jingdong, et al (2001), "Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole", Chemical communications(18), pp 1740-1741 Vollbrecht, Joachim, et al (2018), "Liquid crystalline dithienothiophene derivatives for organic electronics", organic electronics 61, pp 266-275 Ullah, Mujeeb, et al (2017), "Host-free blue phosphorescent dendrimer organic light-emitting field-effect transistors and equivalent light-emitting diodes: A comparative study", ACS Photonics 4(4), pp 754-760 Ditchfield, RHWJ, Hehre, W J_, and Pople, John A (1971), "Self‐consistent molecular‐orbital methods IX An extended Gaussian‐type basis for molecular‐orbital studies of organic molecules", The Journal of Chemical Physics 54(2), pp 724-728 Braunschweig, Holger, et al (2012), "Controlled homocatenation of boron on a transition metal", Nature chemistry 4(7), pp 563-567 Yamaguchi, Shigehiro and Tamao, Kohei (1998), "Silole-containing σ-and πconjugated compounds", Journal of the Chemical Society, Dalton Transactions(22), pp 3693-3702 Corey, Joyce Y (2011), "Siloles: Part 1: Synthesis, characterization, and applications", Advances in Organometallic Chemistry 59, pp 1-180 O'Brien, Daniel H and Breeden, David L (1981), "Tetraanion of 1, 1-dimethyl2, 3, 4, 5-tetraphenyl-1-silacyclopentadiene", Journal of the American Chemical Society 103(11), pp 3237-3239 Yamaguchi, Shigehiro and Tamao, Kohei (1996), "Theoretical Study of the Electronic Structure of 2, 2′-Bisilole in Comparison with 1, 1′-Bi-1, 3cyclopentadiene: σ*–π* Conjugation and a Low-Lying LUMO as the Origin of the Unusual Optical Properties of 3, 3′, 4, 4′-Tetraphenyl-2, 2′-bisilole", Bulletin of the Chemical Society of Japan 69(8), pp 2327-2334 Tamao, Kohei, et al (1996), "Silole derivatives as efficient electron transporting materials" 118(47), pp 11974-11975 Tamao, Kohei, Ohno, Shigeki, and Yamaguchi, Shigehiro (1996), "Silole– pyrrole co-oligomers: their synthesis, structure and UV-VIS absorption spectra", Chemical Communications(16), pp 1873-1874 130 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 Kim, Dong-Ha, et al (2006), "Synthesis of π-conjugated oligomers containing dithienosilole units" 25(6), pp 1511-1516 Lee, Kwang-Hoi, Ohshita, Joji, and Kunai, Atsutaka (2004), "Synthesis and properties of bis (methylthio) dithienosilole and its oxides", Organometallics 23(23), pp 5481-5487 Kim, Dong-Ha, et al (2006), "Synthesis of π-conjugated oligomers containing dithienosilole units", Organometallics 25(6), pp 1511-1516 Liu, Feng, et al (2013), "Characterization of the morphology of solutionprocessed bulk heterojunction organic photovoltaics", Progress in Polymer Science 38(12), pp 1990-2052 Chen, Li‐Min, et al (2009), "Recent progress in polymer solar cells: manipulation of polymer: fullerene morphology and the formation of efficient inverted polymer solar cells", Advanced Materials 21(14‐15), pp 1434-1449 Boudreault, Pierre-Luc T, Najari, Ahmed, and Leclerc, Mario (2011), "Processable low-bandgap polymers for photovoltaic applications", Chemistry of Materials 23(3), pp 456-469 Spanggaard, Holger and Krebs, Frederik C (2004), "A brief history of the development of organic and polymeric photovoltaics", Solar Energy Materials and Solar Cells 83(2-3), pp 125-146 Li, Yongfang and Zou, Yingping (2008), "Conjugated polymer photovoltaic materials with broad absorption band and high charge carrier mobility", Advanced Materials 20(15), pp 2952-2958 Yao, Huifeng, et al (2016), "A Wide Bandgap Polymer with Strong π–π Interaction for Efficient Fullerene‐Free Polymer Solar Cells", Advanced Energy Materials 6(15), p 1600742 Xu, Xiaopeng, et al (2019), "The recent progress of wide bandgap donor polymers towards non-fullerene organic solar cells", Chinese Chemical Letters 30(4), pp 809-825 Huang, Fei, Yip, Hin-Lap, and Cao, Yong (2015), Polymer photovoltaics: materials, physics, and device engineering, Royal Society of Chemistry Bin, Haijun, et al (2016), "Non-fullerene polymer solar cells based on alkylthio and fluorine substituted 2D-conjugated polymers reach 9.5% efficiency", Journal of the American Chemical Society 138(13), pp 46574664 Zhang, Guangjun, et al (2018), "Fluorinated and alkylthiolated polymeric donors enable both efficient fullerene and nonfullerene polymer solar cells", Advanced Functional Materials 28(10), p 1706404 Huo, Lijun and Hou, Jianhui (2011), "Benzo [1, 2-b: 4, 5-b′] dithiophenebased conjugated polymers: band gap and energy level control and their application in polymer solar cells", Polymer Chemistry 2(11), pp 2453-2461 Fan, Qunping, et al (2017), "High‐Performance Non‐Fullerene Polymer Solar Cells Based on Fluorine Substituted Wide Bandgap Copolymers Without Extra Treatments", Solar Rrl 1(5), p 1700020 131 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 Fei, Zhuping, et al (2018), "An alkylated indacenodithieno [3, 2‐b] thiophene‐ based nonfullerene acceptor with high crystallinity exhibiting single junction solar cell efficiencies greater than 13% with low voltage losses", Advanced Materials 30(8), p 1705209 Zhao, Wenchao, et al (2017), "Molecular optimization enables over 13% efficiency in organic solar cells", Journal of the American Chemical Society 139(21), pp 7148-7151 Vu Quoc, Trung, et al (2017), "Crystal structure of N-(4-oxo-2-sulfanylidene1, 3-thiazolidin-3-yl)-2-(thiophen-3-yl) acetamide" 73(6), pp 901-904 Trung, Vu Quoc, et al (2016), "Synthesis and characterization of polythiophenes from hydrazone derivatives sidegroups" 54(6), pp 730-730 Nguyen, Hien, et al (2014), "Programmed Synthesis of Tetraarylthieno [3, 2b] thiophene by Site-Selective Suzuki Cross-Coupling Reactions of Tetrabromothieno [3, 2-b] thiophene" 25(01), pp 93-96 Nguyen, Hien, et al (2014), "Stacking patterns of thieno [3, 2-b] thiophenes functionalized by sequential palladium-catalyzed Suzuki and Heck crosscoupling reactions" 70(9), pp 895-899 Ostroverkhova, Oksana (2016), "Organic optoelectronic materials: mechanisms and applications", Chemical reviews 116(22), pp 13279-13412 Perepichka, Igor F, et al (2005), "Light‐emitting polythiophenes", Advanced Materials 17(19), pp 2281-2305 Rasmussen, Seth C, Evenson, Sean J, and McCausland, Casey B (2015), "Fluorescent thiophene-based materials and their outlook for emissive applications", Chemical Communications 51(22), pp 4528-4543 Garnier, F, et al (1991), "Structural basis for high carrier mobility in conjugated oligomers", Synthetic metals 45(2), pp 163-171 Deman, A-L, et al (2004), "Structural effects on the characteristics of organic field effect transistors based on new oligothiophene derivatives", Synthetic metals 146(3), pp 365-371 Park, Hyoungkeun, et al (2012), "Synthesis and characterization of fluorene and carbazole dithienosilole derivatives for potential applications in organic light-emitting diodes", Tetrahedron 68(45), pp 9278-9283 Evenson, Sean J, et al (2012), "Molecular tuning in highly fluorescent dithieno [3, 2-b: 2′, 3′-d] pyrrole-based oligomers: effects of Nfunctionalization and terminal aryl unit", Physical Chemistry Chemical Physics 14(17), pp 6101-6111 Durben, Stefan, Linder, Thomas, and Baumgartner, Thomas (2010), "Dithienophosphole-capped π-conjugated oligomers", New Journal of Chemistry 34(8), pp 1585-1592 Lin, Wei-Chieh, et al (2013), "A bipolar host containing carbazole/dibenzothiophene for efficient solution-processed blue and white phosphorescent OLEDs", Journal of Materials Chemistry C 1(41), pp 68356841 132 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 Xu, M., et al (2008), "Energy-level and molecular engineering of organic D– π–A sensitizers in dye-sensitized solar cells", J Phys Chem C 112, pp 19770-19776 Nguyen, Huyen Thi and Nguyen, Minh Tho (2016), "Silole-based nickel bisdithiolene complexes: A theoretical design for optoelectronic applications", The Journal of Physical Chemistry C 120(30), pp 16418-16426 Nguyen, Huyen Thi, Huong, Vu Thi Thu, and Nguyen, Minh Tho (2012), "Silole-based oligomers as electron transport materials", Chemical Physics Letters 550, pp 33-40 Denis, Pablo A, Tam, Nguyen Minh, and Nguyen, Minh Tho (2013), "Heat of formation and thermochemical parameters of silole", Chemical Physics Letters 588, pp 17-21 Lee, Taegweon, et al (2004), "Synthesis and luminescence of silicon-bridged bithiophene-and triarylamine-containing molecules" 23(22), pp 5280-5285 Lee, In-Sook, et al (2008), "Synthesis of 2, 6-diaryl-4, 4diphenyldithienosiloles and their luminescent properties" 14(3), pp 344-349 Ohshita, Joji, et al (2001), "Effects of conjugated substituents on the optical, electrochemical, and electron-transporting properties of dithienosiloles" 20(23), pp 4800-4805 Sholl, David and Steckel, Janice A (2011), Density functional theory: a practical introduction, John Wiley & Sons Born, Max and Oppenheimer, J Robert (1927), "On the quantum theory of molecules", Сборник статей к мультимедийному электронному учебнометодическому комплексу по дисциплине «физика атома и атомных явлений»/отв ред Шундалов МБ; БГУ, Физический факультет Parr, Robert G and Ghosh, Swapan K (1986), "Thomas-Fermi theory for atomic systems", Proceedings of the National Academy of Sciences 83(11), pp 3577-3579 Morgan III, John (2006), "Thomas-Fermi and other density-functional theories", Springer Handbook of Atomic, p 295 Hohenberg, P and Kohn, W (1964), "Inhomogeneous electron gas", Physical review, p 136 Capelle, Klaus (2006), "A bird's-eye view of density-functional theory", Brazilian journal of physics 36(4A), pp 1318-1343 Burke, Kieron and Wagner, Lucas O (2013), "DFT in a nutshell", International Journal of Quantum Chemistry 113(2), pp 96-101 Yanai, Takeshi, Tew, David P, and Handy, Nicholas C (2004), "A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP)", Chemical physics letters 393(1-3), pp 51-57 Kobayashi, Rika and Amos, Roger D (2006), "The application of CAMB3LYP to the charge-transfer band problem of the zincbacteriochlorin– bacteriochlorin complex", Chemical physics letters 420(1-3), pp 106-109 133 153 154 155 156 157 158 159 160 161 162 163 164 165 166 Wong, Bryan M and Hsieh, Timothy H (2010), "Optoelectronic and excitonic properties of oligoacenes: substantial improvements from range-separated time-dependent density functional theory", Journal of chemical theory and computation 6(12), pp 3704-3712 Marques, Miguel AL and Gross, Eberhard KU (2003), "Time-dependent density functional theory", A Primer in Density Functional Theory, Springer, pp 144-184 Elliott, Peter, Furche, Filipp, and Burke, Kieron (2009), "3 Excited States from Time-Dependent Density Functional Theory", Reviews in computational chemistry 26, p 91 Gross, Eberhard KU and Maitra, Neepa T (2012), "Introduction to TDDFT", Fundamentals of Time-Dependent Density Functional Theory, Springer, pp 53-99 Marcus, Rudolph A (1968), "Theoretical relations among rate constants, barriers, and Brønsted slopes of chemical reactions", The Journal of Physical Chemistry 72(3), pp 891-899 Marcus, RA (2000), "Tutorial on rate constants and reorganization energies", Journal of Electroanalytical Chemistry 483(1-2), pp 2-6 Skyner, RE, et al (2015), "A review of methods for the calculation of solution free energies and the modelling of systems in solution", Physical Chemistry Chemical Physics 17(9), pp 6174-6191 Tomasi, Jacopo, Mennucci, Benedetta, and Cammi, Roberto (2005), "Quantum mechanical continuum solvation models", Chemical reviews 105(8), pp 2999-3094 Tomasi, J and Mennucci, B (2002), "Self-consistent Reaction Field Methods", John Wiley & Sons, Ltd Goldfinger, Marc B and Swager, Timothy M (1994), "Fused polycyclic aromatics via electrophile-induced cyclization reactions: application to the synthesis of graphite ribbons", Journal of the American Chemical Society 116(17), pp 7895-7896 Kashiki, Tomoya, et al (2009), "One-pot synthesis of benzo [b] thiophenes and benzo [b] selenophenes from o-halo-substituted ethynylbenzenes: convenient approach to mono-, bis-, and tris-chalcogenophene-annulated benzenes", Organic letters 11(11), pp 2473-2475 Modjewski, Matthew, Lindeman, Sergey V, and Rathore, Rajendra (2009), "A Versatile Preparation of Gelander-Type p-Terphenyls from a Readily Available Diacetylenic Precursor", Organic letters 11(20), pp 4656-4659 Yue, Dawei and Larock, Richard C (2002), "Synthesis of 2, 3-disubstituted benzo [b] thiophenes via palladium-catalyzed coupling and electrophilic cyclization of terminal acetylenes", The Journal of Organic Chemistry 67(6), pp 1905-1909 Varathan, E, et al (2013), "Computational design of high triplet energy host materials for phosphorescent blue emitters" 1(27), pp 4261-4274 134 167 168 169 170 171 172 173 174 175 176 177 178 179 180 Grimster, Neil P, et al (2005), "Palladium‐Catalyzed Intermolecular Alkenylation of Indoles by Solvent‐Controlled Regioselective C-H Functionalization", Angewandte Chemie International Edition 44(20), pp 3125-3129 Morita, Tomohiro, Satoh, Tetsuya, and Miura, Masahiro (2015), "Palladium (II)-catalyzed direct C–H alkenylation of thienothiophene and related fused heteroarenes", Organic letters 17(17), pp 4384-4387 Ozaki, Kyohei, et al (2013), "One-shot indole-to-carbazole π-extension by a Pd–Cu–Ag trimetallic system", Chemical Science 4(9), pp 3416-3420 Ohshita, Joji (2009), "Conjugated oligomers and polymers containing dithienosilole units", Macromolecular Chemistry and Physics 210(17), pp 1360-1370 Launay, Jean-Pierre and Verdaguer, Michel (2014), Electrons in molecules: from basic principles to molecular electronics, Oxford University Press Kusama, Hitoshi, Sugihara, Hideki, and Sayama, Kazuhiro (2011), "Theoretical study on the interactions between black dye and iodide in dyesensitized solar cells", The Journal of Physical Chemistry C 115(18), pp 9267-9275 Dong, Zhaowen, et al (2018), "Trialkylsilyl-substituted silole and germole dianions", Organometallics 37(24), pp 4736-4743 Park, Jun-Hyeok, et al (2017), "Planar D–D− π-A Organic Sensitizers for Thin-Film Photoanodes", ACS Energy Letters 2(8), pp 1810-1817 Weisspfennig, Christian T, et al (2013), "Optimizing the energy offset between dye and hole-transporting material in solid-state dye-sensitized solar cells", The Journal of Physical Chemistry C 117(39), pp 19850-19858 Tang, Ching W and VanSlyke, Steven A (1987), "Organic electroluminescent diodes", Applied physics letters 51(12), pp 913-915 Yong, Xue and Zhang, Jingping (2011), "A rational design strategy for donors in organic solar cells: the conjugated planar molecules possessing anisotropic multibranches and intramolecular charge transfer", Journal of Materials Chemistry 21(30), pp 11159-11166 Hutchison, Geoffrey R, Ratner, Mark A, and Marks, Tobin J (2005), "Hopping transport in conductive heterocyclic oligomers: reorganization energies and substituent effects", Journal of the American Chemical Society 127(7), pp 2339-2350 Bourass, Mohamed, et al (2016), "DFT and TD-DFT calculation of new thienopyrazine-based small molecules for organic solar cells", Chemistry Central Journal 10(1), pp 1-11 Liu, Jianzhao, Lam, Jacky WY, and Tang, Ben Zhong (2009), "Aggregationinduced emission of silole molecules and polymers: fundamental and applications", Journal of inorganic and organometallic polymers and materials 19(3), pp 249-285 135 181 182 183 184 185 186 187 188 189 190 Yu, Gui, et al (2005), "Structures, electronic states, photoluminescence, and carrier transport properties of 1, 1-disubstituted 2, 3, 4, 5-tetraphenylsiloles", Journal of the American Chemical Society 127(17), pp 6335-6346 Sun, Fuyu and Jin, Ruifa (2017), "DFT and TD-DFT study on the optical and electronic properties of derivatives of 1, 4-bis (2-substituted-1, 3, 4oxadiazole) benzene", Arabian Journal of Chemistry 10, pp S2988-S2993 Nguyen, Huyen Thi, Jiang, Jyh-Chiang, and Nguyen, Minh Tho (2018), "A theoretical design of some silole-based dibenzothiophene-S, S-dioxide semiconducting compounds for red phosphorescence", Organic Electronics 54, pp 270-276 Irfan, Ahmad, et al (2018), "Tuning the optoelectronic and charge transport properties of 2, 5-di (pyrimidin-5-yl) thieno [3, 2-b] thiophene by oligocene end cores substitution", Results in Physics 11, pp 599-604 Ohshita, Joji, et al (2002), "Preparation of 4, 4-Diaryl-2-(tricyanoethenyl) dithienosiloles and Vapor-Chromic Behavior of the Film", Organic letters 4(11), pp 1891-1894 Ohshita, Joji, et al (2001), "Effects of conjugated substituents on the optical, electrochemical, and electron-transporting properties of dithienosiloles", Organometallics 20(23), pp 4800-4805 Ohshita, Joji, et al (1998), "Synthesis and properties of dithienosiloles", Journal of organometallic chemistry 553(1-2), pp 487-491 Wazzan, Nuha and Safi, Zaki (2019), "Effect of number and position of methoxy substituents on fine-tuning the electronic structures and photophysical properties of designed carbazole-based hole-transporting materials for perovskite solar cells: DFT calculations", Arabian journal of chemistry 12(1), pp 1-20 Wu, Jie, et al (2010), "Theoretical study on dithieno [3, 2-b: 2′, 3′-d] phosphole derivatives: high-efficiency blue-emitting materials with ambipolar semiconductor behavior", Theoretical Chemistry Accounts 127(4), pp 419427 Zhan, Xiaowei and Zhu, Daoben (2010), "Conjugated polymers for highefficiency organic photovoltaics", Polymer Chemistry 1(4), pp 409-419 ...BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI - TRẦN NGỌC DŨNG Nghiên cứu cấu trúc tính chất số hệ vòng ngưng tụ chứa lưu huỳnh silic ứng dụng chế tạo vật liệu quang điện Chuyên... tiễn luận án - Áp dụng tính tốn hóa học lượng tử để làm rõ mối liên hệ cấu trúc phân tử hợp ngưng tụ chứa lưu huỳnh silic với tính chất quang điện vật liệu - Nghiên cứu, thiết kế số hợp chất có tính. .. dụng chế tạo vật liệu quang điện? ?? Mục đích, nhiệm vụ nghiên cứu - Mục đích: Mơ dự đốn mối liên hệ cấu trúc tính chất số hệ vòng ngưng tụ chứa lưu huỳnh silic tính tốn hố học lượng tử Kết tính

Ngày đăng: 08/01/2023, 15:05

Tài liệu cùng người dùng

Tài liệu liên quan