Phương pháp giải phương trình vô tỷ thường gặp

100 0 0
Phương pháp giải phương trình vô tỷ thường gặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

THCS TOANMATH com MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH VÔ TỶ 1 Phương trình vô tỷ cơ bản 2 ( ) 0 ( ) ( ) ( ) ( ) g x f x g x f x g x ≥ = ⇔  = Ví dụ 1 Giải các phương trình a) 2 2 6 2 1x x x+ + = +[.]

MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH VƠ TỶ Phương trình vơ tỷ bản:  g ( x) ≥ f= ( x) g ( x) ⇔   f ( x) = g ( x) Ví dụ 1: Giải phương trình: a) x2 + 2x + = 2x + b) 2x +1 + = x 4x + Lời giải: a) Phương trình tương đương với: x= + b) Điều kiện: x ≥ Bình phương vế ta được:  x ≥ −8 3x + + 2 x + x = x + ⇔ 2 x + x = x + ⇔  2 4(2 x + x) = ( x + 8) x =  x ≥ −8 Đối chiếu với điều kiện ta thấy có ⇔ ⇔  x = − 16 − − = x x 12 64   x = nghiệm phương trình Ví dụ 2: Giải phương trình: II MỘT SỐ DẠNG PHƯƠNG TRÌNH VƠ TỶ THƯỜNG GẶP Giải phương trình vơ tỷ phương pháp sử dụng biểu thức liên hợp: THCS.TOANMATH.com Dấu hiệu: + Khi ta gặp toán giải phương trình dạng: n f ( x ) + m g ( x ) + h( x ) = Mà đưa ẩn, đưa ẩn tạo phương trình bậc cao dẫn đến việc phân tích giải trực tiếp khó khăn + Nhẩm nghiệm phương trình đó: thủ cơng ( sử dụng máy tính cầm tay) Phương pháp: • Đặt điều kiện chặt phương trình ( có) Ví dụ: Đối phương trình: x + += 2x2 + + 2x + Nếu bình thường nhìn vào phương trình ta thấy: Phương trình xác định với x ∈ R Nhưng chưa phải điều kiện chặt Để giải triệt để phương trình ta cần đến điều kiện chặt là: + Ta viết lại phương trình thành: x2 + − 2x2 + = 2x − x + − x + < phương trình có nghiệm 2x − < ⇔ x < Để ý rằng: • Nếu phương trình có nghiệm x0 : Ta phân tích phương trình sau: Viết lại phương trình thành: n f ( x) − n f ( x0 ) + m g ( x) − m g ( x0 ) + h( x) − h( x0 ) = Sau nhân liên hợp cho cặp số hạng với ý: + ( + ( a −b )( a −b )( ) a + ab + b = a − b3 ) a + b =a − b THCS.TOANMATH.com + Nếu h( x) = có nghiệm x = x0 ta ln phân tích h( x= ) ( x − x0 ) g ( x) Như sau bước phân tích rút nhân tử chung x − x0 phương trình  x − x0 = 0⇔ ban đầu trở thành: ( x − x0 ) A( x) =  A( x) = Việc lại dùng hàm số , bất đẳng thức đánh giá để kết luận A( x) = vơ nghiệm • Nếu phương trình có nghiệm x1 , x2 theo định lý viet đảo ta có nhân tử chung là: x − ( x1 + x2 ) x + x1.x2 Ta thường làm sau: + Muốn làm xuất nhân tử chung n f ( x) ta trừ lượng ax + b Khi nhân tử chung kết sau nhân liên hợp n f ( x) − (ax + b) + Để tìm a, b ta xét phương trình: n f ( x) − (ax + b) = Để phương trình có n ax1 + b = f ( x1 ) hai nghiệm x1 , x2 ta cần tìm a, b cho  n f (x ) ax2 + b = + Hồn tồn tương tự cho biểu thức cịn lại: Ta xét ví dụ sau: Ví dụ 1: Giải phương trình: a) x − + x − + x − = b) x − + − x= x − x − Giải: THCS.TOANMATH.com a) Phân tích: Phương trình đề gồm nhiều biểu thức chứa quy ẩn Nếu ta lũy thừa để triệt tiêu dấu , tạo phương trình tối thiểu bậc Từ ta nghỉ đến hướng giải : Sử dụng biểu thức liên hợp để tách nhân tử chung Điều kiện x ≥ Ta nhẩm nghiệm phương trình là: x = Khi x3 − 1= − 1= 2; x − 1= − 1= x3 − − + x − − + x − =0 Ta viết lại phương trình thành: ⇔ x3 − 5x −1 + = 2x − + ( x − 1)  5( x + x + 1) ⇔ ( x − 1)  +  x3 − +  + 2x −1 +1 + x − =0  + 1 =  3 ( x − 1) + x − +  Dễ thấy : 5( x + x + 1) Với điều kiện x ≥ + 5 x3 − + 2 3 ( x − 1) + 2x −1 +1 Nên phương trình cho có nghiệm x = b) Điều kiện: x ∈ [ 2; 4] Ta nhẩm nghiệm phương trình là: x = Khi x−2 = − = 1; − x = Từ ta có lời giải sau: THCS.TOANMATH.com 4−3 = +1 > Phương trình cho tương đương với: x − − + − − x= x − x − x −3 x −3 ⇔ + =− ( x 3)(2 x + 1) x − −1 1+ − x 1   ⇔ ( x − 3)  + − (2 x + 1)  =  x − −1 1+ − x  x =  1  + − (2 x + 1) =  x − + 1 + − x Để ý rằng: Với điều kiện x ∈ [ 2; 4] 1 ≤ 1; ≤ 1; x + ≥ nên x − +1 1+ − x 1 + − (2 x + 1) < x − +1 1+ − x Từ suy ra: x = nghiệm phương trình Nhận xét: Để đánh giá phương trình cuối vơ nghiệm ta thường dùng A ước lượng bản: A + B ≥ A với B ≥ từ suy ≤ với A+ B A + B > số A, B thỏa mãn  B ≥ Ví dụ 2: Giải phương trình: x a) x − + = b) x3 − x − x − ( x − ) x − − x + 28 = Giải: a) Điều kiện: x ≥ THCS.TOANMATH.com Ta nhẩm nghiệm x = Nên phương trình viết lại sau: x − − + x − 3= ⇔ x3 − − x2 − x2 −1 + x2 −1 + + x −3 = x − 27 x3 − +  x+3 x + 3x +  ⇔ ( x − 3)  +1−  =0 3 x x x − + − + − +   x = ⇔  x+3 x + 3x + +1− =0  x − + x − + x3 − + Ta dự đoán: x+3 x2 −1 + x2 −1 + giá trị x ≥ ta thấy Ta chứng minh: +1− x + 3x + < ( Bằng cách thay x+3 x2 −1 + x2 −1 + x+3 x3 − + x2 −1 + x2 −1 + < +1− x + 3x + x3 − + x + 3x + x3 − + < 0) >2 Thật vậy: x+3 + Ta xét Đặt (x − 1) + x − + x − x − = t > ⇒ x = t + Bất phương trình tương đương với t + 2t + > t + ⇔ t + 3t + 6t + 4t > Điều hiển nhiên THCS.TOANMATH.com + Ta xét: x + 3x + x −2 +5 > ⇔ x + 3x − > x3 − ⇔ x + x3 + x − x + > ∀x ≥ 0(*) Điều ln Từ suy phương trình có nghiệm nhất: x = b.) Điều kiện: x ≥ Để đơn giản ta đặt x =t ≥ ⇒ x =t Phương trình cho trở thành: t − 2t − (t − 4) t − − 3t + 28 = ⇔ 3t − t + 2t − 28 + (t − 4) t − = Nhẩm t = Nên ta phân tích phương trình thành: ⇔ 4t − t + 2t − 32 + (t − 4) ( ) t3 − −1 =   t + 2t +   ⇔ (t − 2) ( 4t + 7t + 16 ) + (t − 4)   =  t − +    Để ý 4t + 7t + 16 > t ≥ nên ta có  t + 2t +  16 ( 4) + + + − t t t ( )   > Vì phương trình có nghiệm  t − +1 t = ⇔ x = Nhận xét: Việc đặt x = t toán để giảm số lượng dấu giúp đơn giản hình thức tốn Ngồi tạo liên hợp (t − 4) > nên ta tách khỏi biểu thức để thao tác tính tốn đơn giản Ví dụ 3: Giải phương trình: a) x + + 19 − x = x + x + THCS.TOANMATH.com b) x − 11 3x − − x + = c) x2 + (Tuyển sinh vòng lớp 10 Trường THPT x+ = x ( x + 1) chuyên Tự nhiên- ĐHQG Hà Nội 2012) d) x3 + x + x + = x2 + 2x + a) Điều kiện: −3 ≤ x ≤ x2 + x + 19 Ta nhẩm nghiệm x = 1, x = −2 nên ta phân tích để tạo nhân tử chung là: x + x − Để làm điều ta thực thêm bớt nhân tử sau: + Ta tạo x + − (ax + b) = cho phương trình nhận x = 1, x = −2 nghiệm  a=  a + b =  Để có điều ta cần:  ⇔ −2a + b = b = 20  + Tương tự 19 − x − (mx + n) = nhận x = 1, x = −2 nghiệm  a= −  m + n =  Tức  ⇔  13 −2m + n = b=  Từ ta phân tích phương trình thành: THCS.TOANMATH.com 20  4  13 x  x + −  x +  + 19 − x −  −  − ( x + x − ) =  3  3 ⇔ 4 19 − x − (13 − x) x + − ( x + )  + − ( x2 − x − 2) =  3 ⇔ − x2 − x +  − x2 − x +  − ( x2 + x − 2) =  +  x + + ( x + )  3 19 − x + (13 − x)      1  ⇔ − ( x − x − 2) + + 1 =0  3 x + + ( x + ) 3 19 − x + (13 − x)       Dễ thấy với −3 ≤ x ≤ 19 > 0, 3 x + + ( x + 5) 3 19 − x + (13 − x)  Nên >0 1 + +1 > 3 x + + ( x + ) 3 19 − x + (13 − x)    x = Phương trình cho tương đương với x + x − = ⇔   x = −2 Vậy phương trình có nghiệm là:= x 3,= x b) Điều kiện: x ≥ Phương trình viết lại sau: x − − x + = x − 11 THCS.TOANMATH.com Ta nhẩm nghiệm= x 3,= x nên suy nhân tử chung là: x − 11x + 24 Ta phân tích với nhân tử x − sau: cho phương trình nhận= + Tạo x − − ( ax + b ) = x 3,= x a+b = 3= a nghiệm Tức a, b cần thỏa mãn hệ:  ⇔ 8a + b =20 b =−4 m + n 10 = 3= m + Tương tự với x + − (mx + n) = ⇔ ta thu được:  m + n 15 = 8= n Phương trình cho trở thành: x − − (3 x − 4) + ( x + 7) − x + = ⇔ x − 11x + 24 −9( x − 11x + 24) + =0 x − + (3 x − 4) ( x + 7) + x +   −9 ⇔ ( x − 11x + 24 )  + =  x − + (3 x − 4) ( x + 7) + x +   x − 11x + 24 =  ⇔ −9 + =  x − + (3 x − 4) ( x + 7) + x + Ta xét A( x) = −9 + x − + (3 x − 4) ( x + 7) + x + Ta chứng minh: A( x) < tức là: −9 +

Ngày đăng: 05/01/2023, 13:13

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan