1. Trang chủ
  2. » Giáo Dục - Đào Tạo

ĐỀ THI THỬ ĐẠI HỌC NĂM HỌC 2012-2013 MÔN TOÁN ĐỀ 18 docx

17 330 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 17
Dung lượng 517,5 KB

Nội dung

Nguoithay.vn a/ c/ cos ax+b a cos ax+b dx : I b/ sin ax+b dx cos ax+b sin ax+b a sin ax+b dx d/ cos ax+b dx ln sin ax+b sin ax+b ln cos ax+b f ( x)dx R sin m x; cos n x ta ý : b/ c nguyên hàm II Tính tích phân sau : 2005) I a ( sin 2x sin x cos x b a I sin x sin x dx 3cos x t 3cos x 2cos x s inx I 3cos x dx KQ: ln 1 t2 ;s inxdx=- tdt cosx= 3 x sin 2x cos x dx cos x I 2005 dx t2 1 t t tdt 2; x 2 t 2t dt 2 t t 34 27 Nguoithay.vn b I sin x cos x dx cos x 0 cos x 2sin x cos x dx s inxdx cosx+1 cos x dt=-sinxdx, x=0 t cosx 2 f ( x)dx t dt t t 2 t 2 t dt t f ( x)dx I t=2;x= 1 dt t 2 t 2t ln t 2ln 1 2 Tính tích phân sau a - I 2006 sin 2x cos2 x 4sin x a I cos 3x dx sin x 2005 I b sin 2x cos x 4sin x 2 dx t2 2tdt 2sin x cos x 8sin x cos x dx 3sin xdx x t 1; x 2 f ( x)dx I b I tdt 31 t cos2 x 4sin x sin xdx tdt t KQ: KQ: 3ln cos2 x 4sin x t dx 2 t dt 31 cos 3x dx sin x Ta có : cos3x=4cos3 x 3cos x 4cos2 x cosx= 4-4sin x cosx= 1-4sin x cosx cos3x Cho nên : f ( x)dx dx 1+sinx 4sin x s inx dt=cosxdx,x=0 t s inx 2 I f ( x)dx t=1;x= t f ( x)dx 4t t dt t cosxdx t 2 dt dt t 4t 8t 2t 3ln t 2 3ln Tính tích phân sau Trang - a sin xdx 2005 I b I 2006 sin x cos x sin 2x sin x cos x.cos dx x KQ: ln a I b I sin xdx x sin x cos x.cos 2 sin x cos x sin 2x sin x cos x dx s inx+cosx ; 4 sinx+cosx d sinx+cosx x x d s inx+cosx sinx+cosx ln s inx+cosx sin x 4 ln 2 ln1 ln Tính tích phân sau a b I 2006 cos2x sin x cos x Cho nên : f ( x)dx cos2x dx 2sin 2x dx Vì : cos x cos2 x sin x cos2x sinx-cosx+3 cosx-sinx dx s inx-cosx+3 f ( x)dx sinx-cosx+3 f ( x)dx I t2 dt t3 t dt t3 KQ: KQ: sin x cos x dx t2 31 t t2 cosx+sinx cosx-sinx cosx+sinx dx t 32 ln 4 dt= cosx+sinx dx; x t cos2x I 2006 a I ln cosx-sinx dx V ln cosx Vì : s inx+cosx= sin x Cho nên : I s inx dx 1+cosx sin x cos x dx s inx+cosx dx sinx+cosx sin xdx sin x cos x cosx 2, x t dt t3 32 - Trang b I I cos2xdx= dt 4 cos xdx dt cos2x dx 2sin 2x t 2sin x x cos2x dx 2sin 2x ln t dt 41 t t 1; x t ln Tính tích phân sau : a C 2006 I b a I b I 4sin3 x dx cos x 4sin3 x dx cos x I 2006 KQ: sin3x sin3 3x dx cos3x cos2 x cosx s inxdx=4 cosx s inxdx=4 1 cosx 2 2 sin3x sin3 3x dx cos3x Ta có : sin 3x sin3 3x sin 3x sin 3x sin3xdx=- dt dt=-3sin3xdx t cos3x x t f ( x)dx 1 t dt 32 t sin 3x.cos 3x 2; x t 2 1 t 2t ln t 1 t dt 31 t 1 ln Tính tích phân sau a I = sin x sin x cot gx dx sin x b I = 3 Trang 4 0 a I = sin( x) dx x) 4 d I = cos x( sin x cos x)dx sin x dx c I = sin( 2 3 sin x sin x cot gx dx sin x sin x cot xdx s inx s inx 3 - cot xdx sin x 3 cot x cot xdx sin( b I = sin( 2 x) dx x) d cosx+sinx cosx+sinx cosx-sinx dx cosx+sinx ln cosx+sinx 2 2 sin x dx c I = cos2x 1 cos2x+ cos4x dx 8 dx 12 cos4x 2cos 2x dx 40 1 x sin 2x sin 4x 32 16 4 d I = cos x( sin x cos x)dx Vì : sin x cos4 x sin 2 x Cho nên : I 2 12 sin x cos2xdx= cos2xdx- sin 2 x cos xdx 20 sin x 2 sin x 0 Tính tích phân sau a I = sin xdx b I = sin x cot gx dx 2 d */I = ( cos x tg x cot g x 2dx c I = sin x )dx 2 0 a I = sin xdx 2 cos x sinxdx=- 2cos x cos x d cosx cosx+ cos3 x cos x 0 15 - Trang b I = sin x cot gx dx dx sin x 2tdt cot x t t cot x x 2tdt t I dt 2t 2 1 t 3 t anx-cotx dx t anx-cotx dx Vì : tanx-cotx= Cho nên : x sinx cosx ;2 t anx-cotx dx t anx-cotx dx ln sin x 4 d I = ( cos x cos2x sin2x 2cot x t anx-cotx0;x 3 ; 3 cot x 3 I ln sin x sin x cos x sinxcosx 2x ; 6 cosx sinx 2tdt tg x cot g x 2dx c I = 3; x t dx sin x ; cos2x dx sin2x ln sin x )dx (1) x t dx dt , x t ;x t I cos t sin t dt sin t 3 cost dt sin x cosx dx 2 2I I Tính tích phân sau a tan xdx (Y-HN-2000) b cos2x dx (NT-2000) c sinx+cosx+2 4 Trang - cos x dx (NNI-2001) sin x sin x dx ( GTVT-2000) cos x e a tan xdx Ta có : f ( x) tan x sin x cos x d 2sin x dx (KB-03) sin x sin x dx cos x f cos x 1 cos x cos x cos x ó: I 1 dx cos x cos x f ( x)dx t anx+ tan x dx cos x tan x tan x x 4 3 12 2 12 12 * Chú ý : Ta cịn có cách phân tích khác : tan x tan x tan x 1 f ( x) tan x tan x 3 tan x tan x I tan x tan x dx 4 b dx cos x 3 tan x t anx+x I tan x tan x tan x 3 3 1 dx cos x tan x 1 dx 12 cos2x dx sinx+cosx+2 Ta có : f ( x) sinx+cosx+9 I cos x sin x cos2x sinx+cosx+9 cosx+sinx f ( x)dx sinx+cosx+2 cosx-sinx cosx+sinx sinx+cosx+9 cosx-sinx dx cosx+sinx=t-2.x=0 t t=3;x= cosx-sinx dx f ( x)dx s inx+cosx+2 dt 2 I t2 dt t3 1 t t2 sin t cost sin t cost sin t cost+9 dt 2 2, t t dt t3 t2 dt t3 1 2 1 2 sin t cost cost sin t dt sin t cost+9 - 2 2 f ( x) Trang c cos x dx sin x Ta có : f ( x) cot x I sin x cos6 x sin x 3sin x 3sin x sin x sin x sin x 2 dx dx 3 dx sin x sin x 4 1 x cot x 3cot x 3x sin x 4 sin x dx cos6 x cos x dx cos6 x d 4 1 tan x dx cos x 2 4 e sin x dx cos x 2sin x dx sin x f 23 12 1 dx cos x cos x cos2 x dx sin x tan x tan x d t anx tan x tan x d tan x 0 tan x tan x 2sin x dx cos2x d sin x sin x dx cos x 2 sin x dx cos2x 4 1 dx cos x cos x 1 tan x dx cos x t anx+ tan x tan x t anx- tan x cos2x dx 1 3 sin x sin x sin x 15 d cos2x cos2x ln cos2x ln sin x ln 2 Tính tích phân sau : 2 a sin x cos xdx b sin x dx s inx+ 3cosx c I J cos2x dx cosx- s inx cos6 x cos x d cosx cos x cos x.s inxdx 1 cos7 x cos5 x Trang K 2 a sin x cos xdx cos x dx s inx+ 3cosx sin 3x dx 2cos3x 0 35 - ln b 3sin 3x dx cos 3x sin 3x dx 2cos3x sin x cos x dx s inx+ 3cosx c Ta có : I J Do : 20 x 2sin cos x+ x x tan d tan x ln tan 2 sin x 3cos x dx s inx+ 3cosx I 3J 16 20 sin x 6 sin x ln dx x x tan 6 ln (1) 3cosx sin x 3cosx dx s inx+ 3cosx ln d tan 1 x x tan 2cos 2 6 - ln cos 3x 16 dx 201 cosx s inx+ 2 sin x I d cos 3x cos 3x I 3J s inx- 3cosx dx cosx- s inx 0 ln I 3J I t x dt dx cos t+3 x ;t 4 0.x cos2t dt sint+ 3cost dt sin t+3 J ln 16 ln 16 t 6 cos 2t+3 K I J (2) I ln J 2 Tính tích phân sau a dx sin x -99) b 10 c 10 4 sin x cos x sin x cos x dx (SPII-2000) d a dx s inx+cosx dx sin x b 4 s inx+cosx dx cos x s inxsin x+ dx tan x -LN-2000) -2000) dx 4 dx s inx+cosx - Trang tan t x x 2cos 1 t t2 dt 2 tan u f (t )dt t u2 2du I 2u u1 u2 2 2dt t t 0, x t 2 ; t tan u 2 2 du 2du 2 tan u cos u tan u u2 u1 u1 2dt t 2t du; t cos 2u 2dt 2dt ;x t2 dx dt t2 2t t2 t 1 x tan dx; 2 dx I dt arctan 2 arxtan sin10 x cos10 x sin x cos x dx c Ta có : sin10 x cos10 x sin x cos4 x sin x cos2 x cos4 x sin x cos6 x sin x cos2 x sin x cos2 x sin x cos4 x sin x cos2 x sin x sin x cos2 x I x 6 sin cos x+ sin x sin x+ s inxsin x+ f ( x)dx ln sin x 2 I x 6 s inx ln x s inxsin x+ I sin x 32.8 sin x cos x+ cosx sinx sin x ln 15 64 6 * 6 dx ln s inx = cosx-sinxco x s inxsin x+ 6 ln cosx-sinxco x ln sin x+ 6 * Chú ý : Ta cịn có cách khác Trang 10 1 cos4x+ cos8x 32 f ( x) cosx sinx sin x 15 32 dx s inxsin x+ Ta có : x 1 cos4x cos8x sin x 16 32 1 15 cos4x+ cos8x dx 32 32 d 15 32 cos 2 x - f(x)= s inxsin x+ dx cot x sin x I sin x s inx+ cosx 2 s inx 6 2d cot x cot x ln cot x ln cot x 6 Tính tích phân sau s inxcos3 x dx (HVBCVT-99) cos x 2 a b cos x cos 2 xdx ( HVNHTPHCM-98) c sin x dx cos x sin x s inxcos3 x a dx cos x -01) cos x (sin x)dx cos x dt dx cos x d -95) 2sin x cos xdx sin xdx t cos x I 1 t 22 t cos x t 1; x dt 1 dt 21 t t 2; x ln t t 2 t ln 2 b cos x cos 2 xdx cos2x cos4x cos2x+cos4x+cos4x.cos2x 2 1 1 cos2x+cos4x+ cos6x+cos2x cos2x+ cos4x+ cos6x 4 8 Ta có : f ( x) cos2 x cos2 x I 1 cos2x+ cos4x+ cos6x dx 8 1 sin x sin x sin x x 16 16 48 c sin x dx cos x sin x Vì : d sin x cos6 x d sin x cos6 x sin xdx 6sin5 x cos x 6cos5 x sin x dx 6sin x cos x sin x cos4 x 3sin x sin x cos2 x sin x cos2 x dx sin xdx sin x dx cos x sin x 3sin 2x cos 2xdx d sin x cos6 x 6 d sin x cos x sin x cos6 x ln sin x cos6 x - ln Trang 11 d dx cos x cos x dx cos x t anx+ tan x tan x d t anx Tính tích phân sau b sin x cos xdx (NNI-96) a sin11 xdx ( HVQHQT-96) 0 c cos x cos xdx (NNI-98 ) d cos2x dx -97 ) a sin11 xdx Ta có : sin11 x sin10 x.sinx= 1-cos2 x sinx= 1-5cos2 x 10cos3 x 10cos4 x 5cos5 x cos6 x sinx 1-5cos x 10cos3 x 10cos x 5cos5 x cos6 x s inxdx Cho nên : I 5 cos7 x cos6 x 2cos5 x cos x cos3 x cosx 118 21 b sin x cos xdx sin x cos x cos2x cos2x 2 1 cos2x 2cos x cos 2 x 1 2cos x cos 2 x cos2x-2cos 2 x cos3 x 1 1+cos4x 1+cos4x cos2x-cos 2 x cos3 x cos2xcos2x 8 2 1 cos2x-cos4x+cos4x.cos2x 16 3cos x cos6x-cos4x 32 cos6x+cos2x cos2x-cos4x+ 16 I 3cos x cos6x-cos4x dx 32 1 sin x sin x sin x x 32 64 32.6 32.4 d cos xdx cos2x dx 0 cosx dx cosxdx cosxdx 2 s inx s inx Trang 12 1 2 - b b f ( x)dx f (b x)dx x x b -x=t , suy x=b-t dx=-dt , b f ( x)dx f (b x)dx Vì tích phân khơng f (b t )dt b 0 : Tính tích phân sau a/ 4sin xdx s inx+cosx b/ dx f/ sin x cos x dx sin x cos3 x t n 4sin xdx a/ I s inx+cosx dt x x dx, x 0 2 4sin f ( x)dx 4cosx f (t )dt t t sinx+cosx dx ;x 2 t sin I sin x dx sin x cos6 x e/ xm x dx s inx+cosx 2 5cos x 4sin x d/ c/ log t anx dx t b b f (b t )( dt ) V b t t t cos I cos t dt cost+sint t dt f (t )dt 2 2I I 2 b/ I cos x dx tan x 5cos x 4sin x s inx+cosx 4 s inx+cosx s inx+cosx dx s inx+cosx dx dx - Trang 13 I 5cos x 4sin x s inx+cosx 5sin t cos t dx cost+sint dt 5sin x 4cosx s inx+cosx dx 2 2 2I s inx+cosx dx tan x dx cos x I 2 c/ log t anx dx dt , x dx t x x t ;x t f ( x)dx log t anx dx log tan Hay: f (t ) log 1 tan t tan t f (t )dt I t dt log 2 tan t dt t dt log 2 log t log tdt dt 2I t I sin x dx (1) sin x cos6 x d/ I sin sin cos6 t t cos6 x dx I (2) cos6 x sin x d t t cos6 x sin x dx cos6 x sin x 2I dx x2 I n e/ xm x dx -x suy x=1-t Khi x=0,t=1;x=1,t=0; dt=-dx 0 I 1 t m n t n (1 t ) m dt t ( dt ) xn (1 x)m dx 4sin x dx cosx s inxcos3 x dx cos x 4 3 x5 x Trang 14 dx -97 ) cosx+2sinx dx cos x 3sin x (XD-98 ) x s inx dx ( HVNHTPHCM-2000 ) cos x x sin x dx ( AN-97 ) cos x - s inx+2cosx dx 3sin x cosx -2000) Ta phân tích : s inx dx 1+cosx -2000 ) sin x cos x dx sin x cos3 x x sin x dx cos x I ln -2000 ) 10 asinx+bcosx+c dx a 's inx+b'cosx+c' asinx+bcosx+c dx a 's inx+b'cosx+c' A B a ' cosx-b'sinx a 's inx+b'cosx+c' C a 's inx+b'cosx+c' -S - Tính I : I A B a ' cosx-b'sinx a 's inx+b'cosx+c' C dx a 's inx+b'cosx+c' Ax+Bln a 's inx+b'cosx+c' C dx a 's inx+b'cosx+c' Tính tích phân sau : a s inx-cosx+1 dx s inx+2cosx+3 c b s inx+7cosx+6 dx 4sin x 3cos x a s inx-cosx+1 dx Ta có : f ( x) s inx+2cosx+3 cosx+2sinx dx ( XD-98 ) cos x 3sin x d I = sinx-cosx+1 sinx+2cosx+3 cos x sin x A 3sin x 3cos x B cosx-2sinx sinx+2cosx+3 f ( x) A 2B 2A B B 3A C C I I d s inx+2cosx+3 dx 5 s inx+2cosx+3 ln 10 5 J 42 dx s inx+2cosx+3 C sinx+2cosx+3 1 Thay vào (1) A A B s inx+ 2A+B cosx+3A+C s inx+2cosx+3 dx 5 ln s inx+2cosx+3 10 J - Tính tích phân J : - Trang 15 dx t ; x t 0, x cos x 2 2dt 2dt f ( x)dx 2 2t t t 2t t 2 t t dt t tan x dt t du t cos 2u tan u 2du cos 2u cos 2u f (t )dt u2 du j= u b u2 u1 cosx+2sinx dx; 4cos x 3sin x f ( x) I I I 3cos x 4sin x 5 cos x 3sin x ;B dx sin x s inx cot x dx sin x 2 u1 ; t 2dt tan u t ln 10 5 A tan u1 u2 u1 tan u2 B 3cos x 4sin x 4cos x 3sin x ln cos x 3sin x x 5 4 ln 10 3cosx 4sin x dx 3sin x cos x sin x sin x dx sin x s inx-cosx dx sin x 15sin 3x cos 3xdx 2 s inxcosx a 2cos x b sin x ln s inx dx cos x Trang 16 dx a,b 2 C 4cos x 3sin x 2 (3) ;C=0 cos5 x sin x dx u2 3 2 du cosx+2sinx 4cos x 3sin x A tan u J tan xdx 0 10 cos4x.cos2x.sin2xdx - tan x 11 dx ( KA-08) cos2x 12 cos x cos xdx (KA-09 ) 14 0 16 x sin x dx sin x cos x 18 sin 3x sin3 x dx cos3x cos x 4sin x dx (KA-06) sin 2004 x dx sin 2004 x cos 2004 x -06) 21 sin x sin2 x dx dx 20 sin x -05) 19 x sin x x cosx dx (KA-2011 ) x sin x cosx x sin x dx (KB-2011) cos x 15 17 dx (KB-08) sin x s inx+cosx 13 sin x s inxsin x+ -05) -06) -06) - Trang 17 ... 10cos3 x 10cos x 5cos5 x cos6 x s inxdx Cho nên : I 5 cos7 x cos6 x 2cos5 x cos x cos3 x cosx 118 21 b sin x cos xdx sin x cos x cos2x cos2x 2 1 cos2x 2cos x cos 2 x 1 2cos x cos 2 x cos2x-2cos... cos4x.cos2x.sin2xdx - tan x 11 dx ( KA-08) cos2x 12 cos x cos xdx (KA-09 ) 14 0 16 x sin x dx sin x cos x 18 sin 3x sin3 x dx cos3x cos x 4sin x dx (KA-06) sin 2004 x dx sin 2004 x cos 2004 x -06) 21 sin

Ngày đăng: 24/03/2014, 09:20

TỪ KHÓA LIÊN QUAN

w