1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Luận văn thạc sĩ VNU UEd phát triển tư duy sáng tạo cho học sinh trong dạy học phương trình, bất phương trình ở trường trung học phổ thông

103 3 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 103
Dung lượng 1,3 MB

Nội dung

MỤCLỤC MỤCLỤC DANH MỤC CÁC TỪ VIẾT TẮT MỞ ĐẦU CHƢƠNG 10 CƠ SỞ LÝ LUẬN VÀ THỰC TIỄN 10 1.1.Một số khái niệm liên quan đến đề tài 10 1.1.1.Tư 10 1.1.2.Khái niệm tư sáng tạo 10 1.2 Phƣơng hƣớng rèn luyện tƣ sáng tạo cho học sinh .13 1.2.1.Chú trọng bồi dưỡng yếu tố cụ thể TDST .13 1.2.2 Bồi dưỡng TDSTcần kết hợp hữu với hoạt động trí tuệ khác 15 1.2.3 Bồi dưỡng TDST cho học sinh cần đặt trọng tâm vào việc phát vấn đề mới, khơi dậy ý tưởng .16 1.2.4 Bồi dưỡng TDST trình lâu dài cần tiến hành tất khâu trình dạy học 17 1.3 Một số cách dạy học nhằm phát triển tƣ sáng tạo cho học sinh 17 1.3.1 Phương pháp dạy học phát giải vấn đề 17 1.3.2 Dạy học khám phá .18 1.3.3 Dạy học hợp tác 18 1.4 Dạy học giải tập tốn trƣờng trung học phổ thơng 18 1.4.2 Phương pháp giải tập toán học .20 1.5 Dạy học nội dung giải phƣơng trình, bất phƣơng trình trƣờng THPT 24 1.5.1 Vị trí, nội dung phần phương trình, bất phương trình chương trình tốn THPT 24 1.5.2 Thực trạng việc học phương trình, bất phương trình trường phổ thơng .24 1.5.3 Thực trạng việc dạy phương trình, bất phương trình trường THPT việc phát triển tư sáng tạo cho học sinh 25 CHƢƠNG 27 PHÁT TRIỂN TƢ DUY SÁNG TẠO CHO HỌC SINH TRONG DẠY HỌC GIẢI PHƢƠNG TRÌNH, BẤT PHƢƠNG TRÌNH 27 2.1 Phát triển tƣ sáng tạo cho học sinh giảng dạy lý thuyết 27 2.2 Rèn luyện phát triển số yếu tố tƣ sáng tạo cho học sinh thông qua dạng tập giải phƣơng trình, bất phƣơng trình 37 2.2.1 Dạng tập có nhiều cách giải 37 2.2.2 Dạng tập rèn luyện suy nghĩ không dập khuôn, máy móc 48 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com 2.2.3 Bài tập rèn luyện khả tìm liên tưởng kết hợp 55 2.2.4 Dạng tập rèn lực tư như: Tương tự, khái quát hóa, đặc biệt hóa 61 2.2.5 Bài tập tìm sai lầm lời giải tốn .66 CHƢƠNG 74 THỰC NGHIỆM SƢ PHẠM 74 3.1.Mục đích, nội dung thực nghiệm sƣ phạm 74 3.1.1 Mục đích thực nghiệm sư phạm 74 3.1.2.Nội dung thực nghiệm sư phạm 74 3.2 Tổ chức thực nghiệm 74 3.2.1 Đối tượng địa bàn thực nghiệm 74 3.2.2.Kế hoạch thực nghiệm 75 3.2.3 Giáo án thực nghiệm sư phạm .75 KẾT LUẬN VÀ KHUYẾN NGHỊ 103 TÀI LIỆU THAM KHẢO 105 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com DANH MỤC CÁC TỪ VIẾT TẮT Viết tắt Viết đầy đủ TDST Tƣ sáng tạo GV Giáo viên HS Học sinh THPT Trung học phổ thông Tr Trang BBT Bảng biến thiên LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com MỞ ĐẦU Lý chọn đề tài Trong hồn cảnh thời đại phát triển giáo dục đào tạo động lực quan trọng để thúc đẩy đất nƣớc, phát huy nguồn lực ngƣời Trong Nghị hội nghị Trung ƣơng IV Ban chấp hành Trung ƣơng Đảng khóa VIII rằng: “Mục tiêu giáo dục đào tạo đào tạo người lao động tự chủ, tích cực, có lực giải vấn đề, góp phần thực mục tiêu lớn đất nước :dân giàu, nước mạnh, xã hội công bằng, dân chủ, văn minh” Và luật giáo dục (1998), điều 24 quy định: “Phương pháp giáo dục phổ thơng phải phát huy tính tích cực, tự giác, chủ động, tư sáng tạo học sinh, phù hợp với đặc điểm lớp học, mơn học ” Nhƣ thấy mục tiêu giáo dục mục tiêu phát triển trí tuệ cho học sinh đƣợc đặt lên hàng đầu.Tuy nhiên dạy học trƣờng phổ thông đứng trƣớc thực trạng: nội dung dạy học nặng nề cung cấp kiến thức, phƣơng pháp dạy học chủ yếu hƣớng đến sử dụng, khai thác trí nhớ khả tƣ tái tạo học sinh Có thể chịu tác động nặng nề mục tiêu thi cử: học để thi đỗ, dạy để có thành tích thi cử tốt Thực trạng việc dạy mơn Tốn trƣờng Trung học phổ thông không tránh khỏi điều đáng lo Để khắc phục điều đó, với lƣợng kiến thức thời gian phân phối cho mơn Tốn địi hỏi giáo viên phải có phƣơng pháp giảng dạy linh hoạt, biện pháp tích cực Nhƣ chuyển tải tối đa lƣợng kiến thức đến học sinh, phát huy đƣợc tƣ sáng tạo cho học sinh, để đáp ứng không học tốt môn LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Tốn mà cịn học tốt mơn học khác nhƣ ứng dụng linh hoạt kiến thức học vào yêu cầu sống Phƣơng trình, bất phƣơng trình nội dung quan trọng chƣơng trình tốn Đại số Giải tích trƣờng THPT Để giải đƣợc nhiều tốn phƣơng trình, bất phƣơng trình địi hỏi học sinh phải biết kết hợp sáng tạo kiến thức học có liên quan suốt chƣơng trình THPT Đây phần kiến thức có vai trị quan trọng việc phát triển tƣ sáng tạo cho học sinh Với lí nêu trên, với mong muốn góp phần phát triển tƣ sáng tạo cho học sinh, chọn đề tài: “Phát triển tư sáng tạo cho học sinh dạy học phương trình, bất phương trình trường trung học phổ thơng ” Mục đích nghiên cứu Phát triển tƣ sáng tạo cho học sinh dạy học phƣơng trình, bất phƣơng trình trƣờng trung học phổ thông Nhiệm vụ nghiên cứu - Nghiên cứu lí luận tƣ duy, tƣ sáng tạo - Thiết kế tốn giải phƣơng trình, bất phƣơng trình nhằm rèn luyện phát triển tƣ cho học sinh - Thực nghiệm sƣ phạm để kiểm nghiệm tính khả thi kết đề tài dạy học Phạm vi nghiên cứu - Nghiên cứu trình dạy học giải phƣơng trình, bất phƣơng trình trƣờng THPT Giả thuyết khoa học Nếu vận dụng linh hoạt biện pháp rèn luyện phát triển tƣ sáng tạo cho học sinh dạy học phƣơng trình, bất phƣơng trình phát huy đƣợc khả tƣ sáng tạo cho học sinh Phƣơng pháp nghiên cứu LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com - Phƣơng pháp nghiên cứu lý luận - Phƣơng pháp điều tra, quan sát - Phƣơng pháp thực nghiệm sƣ phạm Cấu trúc luận văn Ngoài phần mở đầu, kết luận, khuyến nghị, danh mục tài liệu tham khảo luận văn dự kiến đƣợc trình bày chƣơng: - Chƣơng 1: Cơ sở lí luận thực tiễn - Chƣơng 2:Phát triển tƣ sáng tạo cho học sinh dạy học giải phƣơng trình, bất phƣơng trình trƣờng trung học phổ thông - Chƣơng Thực nghiệm sƣ phạm LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com CHƢƠNG CƠ SỞ LÝ LUẬN VÀ THỰC TIỄN 1.1.Một số khái niệm liên quan đến đề tài 1.1.1.Tư Tƣ q trình tâm lí phản ánh thuộc tính chất, mối liên hệ quan hệ có tính quy luật vật, tƣợng thực khách quan, mà trƣớc ta chƣa biết Tƣ khơng phải ghi nhớ giúp cho hồn thiện trí nhớ Tƣ hình thức hoạt động hệ thần kinh thể qua việc tạo liên kết phần tử ghi nhớ, đƣợc chọn lọc kích thích chúng hoạt động để thể nhận thức giới xung quanh, định hƣớng cho hành vi phù hợp với môi trƣờng sống Tƣ mang tính khái quát, tính gián tiếp, tính trừu tƣợng Sản phẩm tƣ khái niệm, phán đoán, suy luận để diễn đạt từ, ngữ, câu, kí hiệu…… 1.1.2.Khái niệm tư sáng tạo 1.1.2.1 Sáng tạo Sáng tạo tìm mới, cách giải khơng bị phụ thuộc, gị bó vào có Ba yếu tố sáng tạo là: - Tính mềm dẻo (Flexibility) - Tính nhuần nhuyễn (Fluency) - Tính độc đáo (Originatily) 10 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Sáng tạo mang tính tƣơng đối (sáng tạo ai), trí tƣởng tƣợng điều kiện cần để sáng tạo 1.1.2.2 Bốn giai đoạn trình sáng tạo Quá trình sáng tạo trải qua giai đoạn: Giai đoạn 1: Là giai đoạn chuẩn bị cho công việc ý thức, nghĩa hình thành vấn đề giải giải cách khác nhau.Vai trò giai đoạn huy động thơng tin hữu ích cịn tiềm ẩn lời giải cần tìm Giai đoạn 2: Giai đoạn đƣợc gọi giai đoạn ấp ủ, đƣợc bắt đầu công việc có ý thức ngừng lại Cơng việc tiếp diễn tiềm thức Giai đoạn 3: “Giai đoạn bừng sáng trực giác”.Đây giai đoạn nhảy vọt chất tiến trình nhận thức để định cho trình tìm kiếm lời giải Sự bừng sáng trực giác thƣờng xuất khơng biết trƣớc có xuất sau có dự cảm biết đƣợc kết Giai đoạn 4: Đây giai đoạn kiểm chứng Ở giai đoạn cần phải triển khai lập luận, chứng minh logic kiểm tra lời giải nhận đƣợc từ trực giác Giai đoạn cần thiết tri thức nhận đƣợc trực giác chƣa chắn Nhƣ sáng tạo hoạt động đa dạng phong phú ngƣời Có thể phân chia sáng tạo thành hai cấp độ nhƣ sau: Cấp độ 1: Là hoạt động cải tạo, cải tiến, đổi mới, nâng cao có lên trình độ cao Cấp độ 2: Là hoạt động tạo chất 1.1.2.3 Tư sáng tạo Tƣ sáng tạo dạng tƣ độc lập, tạo ý tƣởng độc đáo có hiệu giải vấn đề cao Ý tƣởng đƣợc thể chỗ phát vấn đề mới, tìm hƣớng mới, tạo kết Tính độc đáo ý tƣởng thể giải pháp lạ, không quen thuộc 11 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Theo J.Danton: “Tƣ sáng tạo lực tìm thấy ý nghĩa mới, mối quan hệ mới, lực chứa đựng khái quát, phát minh, đổi mới, trí tƣởng tƣợng…” Theo George Polya: “Có thể gọi tƣ có hiệu dẫn đến lời giải tập cụ thể Có thể gọi sáng tạo tƣ tạo tƣ liệu, phƣơng tiện để giải tập” Tƣ sáng tạo có yêu cầu tích lũy kinh nghiệm hay tích lũy tri thức, từ tìm cách giải vấn đề không theo khuôn mẫu, cách thức định sẵn, gạt bỏ hiểu biết kiến thức thông thƣờng nhƣng đảm bảo tính chất nhƣ tính mềm dẻo, tính nhuần nhuyễn, tính hồn thiện Tƣ sáng tạo vận dụng kinh nghiệm giải vấn đề cho vấn đề khác Nếu ngƣời có tƣ kinh nghiệm lúng túng gặp phải vấn đề nằm kinh nghiệm.Tuy nhiên ngƣời có tƣ sáng tạo thì giải đƣợc vấn đề ngồi kinh nghiệm mà họ có.Tƣ sáng tạo nhằm thay đổi kinh nghiệm hay tạo nên kinh nghiệm dựa kinh nghiệm cũ qua làm phong phú thêm kinh nghiệm để thay đổi chất cho vấn đề, vật, việc mà giải quyết, tạo điều kiện phát triển kĩ sáng tạo Krutexki vòng tròn đồng tâm phản ánh mối quan hệ ba dạng tƣ nói lên điều kiện cần TDST tƣ độc lập tƣ tích cực - Tƣ tích cực (Học sinh ý nghe thầy chứng minh định lí cố gắng hiểu) - Tƣ độc lập (Học sinh tự đọc định lí, tự giải toán dƣới hƣớng dẫn thầy giáo) - Tƣ sáng tạo (Học sinh tự khám phá 12 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com định lí, tốn mà trƣớc học sinh chƣa biết) Nhƣ nói tƣ sáng tạo kết hợp đỉnh cao, hoàn thiện tƣ tích cực tƣ độc lập, tạo có tính giải vấn đề cách hiệu chất lƣợng 1.2 Phương hướng rèn luyện tư sáng tạo cho học sinh (Phần trình bày dựa theo khuyến khích số hoạt động trí tuệ HS) 1.2.1.Chú trọng bồi dưỡng yếu tố cụ thể TDST Trong trình dạy học ngƣời giáo viên cần trọng, ý bồi dƣỡng yếu tố cụ thể TDST nhƣ tính mềm dẻo, tính nhuần nhuyễn, tính độc đáo ●Tính mềm dẻo tƣ sáng tạo Tính mềm dẻo tƣ sáng tạo đƣợc thể chủ yếu qua hai đặc trƣng bật sau: - Một lực chuyển hóa tƣ tức chuyển từ cách nhìn sang cách nhìn khác; từ giải pháp sang giải pháp khác Năng lực điều chỉnh kịp thời hƣớng suy nghĩ hƣớng suy nghĩ cũ không giải đƣợc vấn đề gặp trở ngại -Hai suy nghĩ không dập khuôn, không áp dụng máy móc kinh nghiệm, kiến thức, kĩ có, biết vào hồn cảnh mới, điều kiện mà có yếu tố thay đổi Cần có lực nhận vấn đề điều kiện quen thuộc, chức đối tƣợng quen biết ●Tính nhuần nhuyễn tƣ sáng tạo Đó lực tạo cách nhanh chóng tổ hợp yếu tố riêng lẻ tình hồn cảnh, đƣa giả thuyết mới, ý tƣởng Tính nhuần nhuyễn đƣợc đặc trƣng khả tạo số lƣợng định ý tƣởng, đa dạng cách xử lí tốn, tìm nhiều giải pháp giải tốn dƣới nhiều góc độ khác nhau, tình khác Số ý tƣởng nhiều có nhiều khả xuất ý tƣởng độc đáo Tính nhuần nhuyễn tƣ thể rõ nét hai đặc trƣng sau: -Một là: Tính đa dạng cách xử lí giải tốn, khả tìm đƣợc nhiều giải pháp nhiều góc độ tình khác Đứng trƣớc vấn đề phải 13 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com điều kiện cần đủ điểm đoạn  3;5 ▪Điều kiện cần: Thay x  3 vào (1) ta có : GV: Để bất phƣơng trình với x   3;5 với giá trị đặc biệt x  m  15 x  vào Thay HS: bất phƣơng trình với x  3, x  5, x  (giá trị (3  3)(5  3)  (3)2  2(3)  m x  trung điểm đoạn  3;5 GV: u cầu thử giá trị tìm m HS: tìm m  ▪ Điều kiện đủ GV: Giả sử m  , ( x  3)(5  x)  x  x  m(1) nghiệm với 3  x  GV: hƣớng dẫn học sinh dùng bất đẳng thức để đánh giá (1) ta có: (5  3)(5  5)  52  2.5  m  m  15 Thay x  vào (1) ta có: (1  3)(5  1)  12  2.1  m  m  Kết hợp lại ta có điều kiện cần để bất phƣơng trình: ( x  3)(5  x)  x  x  m nghiệm x   3;5 m  ▪Điều kiện đủ Khi 3  x  ( x  3)  (5  x)  Do áp dụng bất đẳng thức cơsi ta có: VT  ( x  3)(5  x)  ▪Nhận xét: Với toán học sinh đƣợc Xét với m  ta có: VP  x  x  m rèn luyện cách nhìn đối tƣợng  ( x  1)  m   m   tốn học dƣới nhiều khía cạnh khác nhau, từ đƣa đƣợc nhiều phƣơng pháp giải tốn Qua phƣơng pháp học sinh x 35 x 4 (vì m  ) KL: Vậy m  bất phƣơng trình ( x  3)(5  x)  x  x  m 92 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com thấy cho riêng cách giải nghiệm x   3;5 hay, đáng nhớ độc đáo Bài 2: Tìm k để phƣơng trình sau có hai nghiệm phân biệt? x   x2  k Giải: Hoạt động : Hƣớng dẫn tìm lời giải (Giáo viên hỏi, học sinh trả Đặt y   x , điều kiện y  lời) Khi ta có: x2  y  -GV: Phƣơng trình có dạng Và x  y  k quen thuộc khơng? Bài tốn trở thành: Nêu cách làm? Tìm k để hệ -HS: Nhận thấy phƣơng trình x   x2  k   x2  k  x x  y  k  Có dạng f ( x)  g ( x)  x  y  có hai nghiệm phân biệt Vì tốn trở thành tìm k để  y  phƣơng trình  x  k  x có hai x ; y ; x ; y với x1  x2 nghiệm phân biệt thuộc đoạn [-  1   2  Ta có đồ thị nhƣ sau: 1;1] -GV:Yêu cầu học sinh cụ thể (để thấy khó khăn làm y cách này!) -HS:u cầu tốn trở thành:Tìm k để : x^2+y^2=1; y>0 x+y=sqrt(2) x+y=1 y

Ngày đăng: 12/12/2022, 15:53

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN