1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Formulae involving ∇ Vector Identities with Proofs: Nabla Formulae for Vector Analysis李国华 doc

8 443 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 8
Dung lượng 86,93 KB

Nội dung

1 Formulae involving Vector Identities with Proofs: Nabla Formulae for Vector Analysis 李国华 (Kok-Wah LEE) @ 08 May 2009 (Version 1.0) No. 4, Jalan Bukit Beruang 5, Taman Bukit Beruang, 75450 Bukit Beruang, Melaka, Malaysia. Email: contact@xpreeli.com; E96LKW@hotmail.com Tel.: +6013-6134998; +606-2312594; +605-4664998 www.xpreeli.com All rights reserved. Vector: A = A 1 i + A 2 j + A 3 k B = B 1 i + B 2 j + B 3 k C = C 1 i + C 2 j + C 3 k Scalar: φ = φ (x,y,z) ψ = ψ (x,y,z) Nabla: z k y j x i ∂ ∂ + ∂ ∂ + ∂ ∂ =∇ (1) (A x B).C ≡ (B x C).A ≡ (C x A).B (2) A x (B x C) ≡ (A.C)B - (A.B)C (3) Prove ∇( φ + ψ ) = ∇ φ + ∇ ψ ( ) ( ) ( ) ( ) k z j y i x k z j y i x ∂ +∂ + ∂ +∂ + ∂ +∂ =+         ∂ ∂ + ∂ ∂ + ∂ ∂ ψφψφψφ ψφ = k z k z j y j y i x i x ∂ ∂ + ∂ ∂ + ∂ ∂ + ∂ ∂ + ∂ ∂ + ∂ ∂ ψ φ ψ φ ψ φ =         ∂ ∂ + ∂ ∂ + ∂ ∂ +         ∂ ∂ + ∂ ∂ + ∂ ∂ k z j y i x k z j y i x ψψψφφφ = ψφ         ∂ ∂ + ∂ ∂ + ∂ ∂ +         ∂ ∂ + ∂ ∂ + ∂ ∂ k z j y i x k z j y i x ∴ ∇( φ + ψ ) = ∇ φ + ∇ ψ (4) Prove ∇( φ ψ ) = φ ∇ ψ + ψ ∇ φ ( ) ( ) ( ) ( ) k z j y i x k z j y i x ∂ ∂ + ∂ ∂ + ∂ ∂ =         ∂ ∂ + ∂ ∂ + ∂ ∂ φψφψφψ φψ 2 = k x k x j x j x i x i x ∂ ∂ + ∂ ∂ + ∂ ∂ + ∂ ∂ + ∂ ∂ + ∂ ∂ φ ψ ψ φ φ ψ ψ φ φ ψ ψ φ =         ∂ ∂ + ∂ ∂ + ∂ ∂ +         ∂ ∂ + ∂ ∂ + ∂ ∂ k z j y i x k z j y i x φφφ ψ ψψψ φ = φψψφ         ∂ ∂ + ∂ ∂ + ∂ ∂ +         ∂ ∂ + ∂ ∂ + ∂ ∂ k z j y i x k z j y i x ∴ ∇( φ ψ ) = φ ∇ ψ + ψ ∇ φ (5) Prove ∇.(A + B) = ∇.A + ∇.B ( ) ( ) ( ) [ ] kBAjBAiBAk z j y i x BA 332211 ).( +++++         ∂ ∂ + ∂ ∂ + ∂ ∂ =+∇ = ( ) ( ) ( ) z BA y BA x BA ∂ + ∂ + ∂ + ∂ + ∂ + ∂ 332211 = LHS ( ) ( ) kBjBiBk z j y i x kAjAiAk z j y i x BA 321321 ++         ∂ ∂ + ∂ ∂ + ∂ ∂ +++         ∂ ∂ + ∂ ∂ + ∂ ∂ =∇+∇ = z B y B x B z A y A x A ∂ ∂ + ∂ ∂ + ∂ ∂ + ∂ ∂ + ∂ ∂ + ∂ ∂ 321321 = ( ) ( ) ( ) z BA y BA x BA ∂ + ∂ + ∂ + ∂ + ∂ + ∂ 332211 = RHS LHS = RHS ∴ ∇.(A + B) = ∇.A + ∇.B (6) Prove ∇x(A + B) = ∇xA + ∇xB ( ) ( ) ( ) [ ] kBAjBAiBAxk z j y i x BAx 332211 )( +++++         ∂ ∂ + ∂ ∂ + ∂ ∂ =+∇ = 332211 BABABA zyx kji +++ ∂ ∂ ∂ ∂ ∂ ∂ = ( ) ( ) ( ) ( ) ( ) ( ) k y BA x BA j z BA x BA i z BA y BA         ∂ +∂ − ∂ +∂ +       ∂ +∂ − ∂ +∂ −         ∂ +∂ − ∂ +∂ 112211 33 22 33 3 =               ∂ ∂ − ∂ ∂ +       ∂ ∂ − ∂ ∂ −         ∂ ∂ − ∂ ∂ +               ∂ ∂ − ∂ ∂ +       ∂ ∂ − ∂ ∂ −         ∂ ∂ − ∂ ∂ k y B x B j z B x B i z B y B k y A x A j z A x A i z A y A 121323121323 = 321 AAA zyx kji ∂ ∂ ∂ ∂ ∂ ∂ + 321 BBB zyx kji ∂ ∂ ∂ ∂ ∂ ∂ ∴ ∇x(A + B) = ∇xA + ∇xB (7) Prove ∇.( φ A) = (∇ φ ).A + φ (∇.A) ( ) kAjAiAk z j y i x A 321 .).( φφφφ ++         ∂ ∂ + ∂ ∂ + ∂ ∂ =∇ = ( ) ( ) ( ) z A y A x A ∂ ∂ + ∂ ∂ + ∂ ∂ 321 φ φ φ = LHS ( ) ( ) ( )       ++         ∂ ∂ + ∂ ∂ + ∂ ∂ +++         ∂ ∂ + ∂ ∂ + ∂ ∂ =∇+∇ kAjAiAk z j y i x kAjAiAk z j y i x AA 321321 ).( φ φφφ φφ =         ∂ ∂ + ∂ ∂ + ∂ ∂ +         ∂ ∂ + ∂ ∂ + ∂ ∂ z A y A x A z A y A x A 321 321 φ φφφ =       ∂ ∂ + ∂ ∂ +         ∂ ∂ + ∂ ∂ +       ∂ ∂ + ∂ ∂ z A z A y A y A x A x A 3 3 2 2 1 1 φ φ φ φ φ φ = ( ) ( ) ( ) z A y A x A ∂ ∂ + ∂ ∂ + ∂ ∂ 321 φφφ = RHS LHS = RHS ∴ ∇.( φ A) = (∇ φ ).A + φ (∇.A) (8) Prove ∇x( φ A) = (∇ φ )xA + φ (∇xA) ( ) 321 AAA zyx kji Ax φφφ φ ∂ ∂ ∂ ∂ ∂ ∂ =∇ = ( ) ( ) ( ) ( ) ( ) ( ) k y A x A j z A x A i z A y A         ∂ ∂ − ∂ ∂ +       ∂ ∂ − ∂ ∂ −         ∂ ∂ − ∂ ∂ 121323 φφφφφφ = k y A y A x A x A j z A z A x A x A i y A y A y A y A         ∂ ∂ − ∂ ∂ − ∂ ∂ + ∂ ∂ +       ∂ ∂ − ∂ ∂ − ∂ ∂ + ∂ ∂ −         ∂ ∂ − ∂ ∂ − ∂ ∂ + ∂ ∂ φ φ φ φ φ φ φ φ φ φ φ φ 1 1 2 2 1 1 3 3 2 2 3 3 =               ∂ ∂ − ∂ ∂ +       ∂ ∂ − ∂ ∂ −         ∂ ∂ − ∂ ∂ k y A x Aj z A x Ai y A y A φφφφφφ 121323 4                 ∂ ∂ − ∂ ∂ +         ∂ ∂ − ∂ ∂ −         ∂ ∂ − ∂ ∂ + k y A x A j z A x A i y A y A 121323 φφφφφφ = 321 AAA zyx kji ∂ ∂ ∂ ∂ ∂ ∂ φφφ + 321 AAA zyx kji ∂ ∂ ∂ ∂ ∂ ∂ φ ∴ ∇x( φ A) = (∇ φ )xA + φ (∇xA) (9) Prove ∇.(AxB) = B.(∇xA) - A.(∇xB) 321 321 .).( BBB AAA kji k z j y i x AxB         ∂ ∂ + ∂ ∂ + ∂ ∂ =∇ = ( ) ( ) ( ) [ ] kBABAjBABAiBABAk z j y i x 122113312332 . −+−−−         ∂ ∂ + ∂ ∂ + ∂ ∂ = ( ) ( ) ( ) z BABA y BABA x BABA ∂ −∂ + ∂ −∂ − ∂ −∂ 122113312332 ( )               ∂ ∂ − ∂ ∂ +       ∂ ∂ − ∂ ∂ −         ∂ ∂ − ∂ ∂ ++=∇ k y A x A j z A x A i z A y A kBjBiBxAB 121323 321 .).( =         ∂ ∂ − ∂ ∂ +       ∂ ∂ − ∂ ∂ −         ∂ ∂ − ∂ ∂ y A x A B z A x A B z A y A B 12 3 13 2 23 1 Similarly, by interchanging the variable of A and B, we have ( )               ∂ ∂ − ∂ ∂ +       ∂ ∂ − ∂ ∂ −         ∂ ∂ − ∂ ∂ ++=∇ k y B x B j z B x B i z B y B kAjAiAxBA 121323 321 .).( =         ∂ ∂ − ∂ ∂ +       ∂ ∂ − ∂ ∂ −         ∂ ∂ − ∂ ∂ y B x B A z B x B A z B y B A 12 3 13 2 23 1 B.(∇xA) - A.(∇xB) =       ∂ ∂ + ∂ ∂ −       ∂ ∂ + ∂ ∂ −         ∂ ∂ + ∂ ∂ x B A x A B z B A z A B y B A y A B 2 3 3 2 1 2 2 1 1 3 3 1         ∂ ∂ + ∂ ∂ −       ∂ ∂ + ∂ ∂ +       ∂ ∂ + ∂ ∂ + y B A y A B x B A x A B z B A z A B 3 1 1 3 3 2 2 3 2 1 1 2 = ( ) ( ) ( ) ( ) ( ) ( ) y BA x BA z BA x BA z BA y BA ∂ ∂ − ∂ ∂ + ∂ ∂ + ∂ ∂ − ∂ ∂ − ∂ ∂ 313221231213 = ( ) ( ) ( ) z BABA y BABA x BABA ∂ − ∂ + ∂ − ∂ − ∂ − ∂ 122113312332 ∴ ∇.(AxB) = B.(∇xA) - A.(∇xB) 5 (10) Prove ∇x(AxB) = (B.∇)A - B(∇.A) - (A.∇)B + A(∇.B) ( ) ( ) ( ) ( ) [ ] kBABAjBABAiBABAx BBB AAA kji xAxBx 122113312332 321 321 −+−−−∇=∇=∇ = 122131132332 BABABABABABA zyx kji −−− ∂ ∂ ∂ ∂ ∂ ∂ = ( ) ( ) ( ) ( ) ( ) ( ) k y BABA x BABA j z BABA x BABA i z BABA y BABA         ∂ −∂ − ∂ −∂ +       ∂ −∂ − ∂ −∂ −         ∂ −∂ − ∂ −∂ 233231132332122131131221 = LHS (B.∇)A - B(∇.A) = ( ) ( ) kBjBiB z A y A x A kAjAiA z B y B x B 321 321 321321 ++         ∂ ∂ + ∂ ∂ + ∂ ∂ −++         ∂ ∂ + ∂ ∂ + ∂ ∂ = k y A B x A B y A B x A Bj z A B x A B z A B x A Bi z A B y A B z A B y A B         ∂ ∂ − ∂ ∂ − ∂ ∂ + ∂ ∂ +       ∂ ∂ − ∂ ∂ − ∂ ∂ + ∂ ∂ +         ∂ ∂ − ∂ ∂ − ∂ ∂ + ∂ ∂ 2 3 1 3 3 2 3 1 3 2 1 2 2 3 2 1 3 1 2 1 1 3 1 2 Similarly, by interchanging the variable of A and B, we have (A.∇)B - A(∇.B) = ( ) ( ) kAjAiA z B y B x B kBjBiB z A y A x A 321 3 21 321321 ++         ∂ ∂ + ∂ ∂ + ∂ ∂ −++         ∂ ∂ + ∂ ∂ + ∂ ∂ = k y B A x B A y B A x B Aj z B A x B A z B A x B Ai z B A y B A z B A y B A         ∂ ∂ − ∂ ∂ − ∂ ∂ + ∂ ∂ +       ∂ ∂ − ∂ ∂ − ∂ ∂ + ∂ ∂ +         ∂ ∂ − ∂ ∂ − ∂ ∂ + ∂ ∂ 2 3 1 3 3 2 3 1 3 2 1 2 2 3 2 1 3 1 2 1 1 3 1 2 (B.∇)A - B(∇.A) - (A.∇)B + A(∇.B) = i z B A z A B y B A y A B z B A z A B y B A y A B             ∂ ∂ + ∂ ∂ −         ∂ ∂ + ∂ ∂ −       ∂ ∂ + ∂ ∂ +         ∂ ∂ + ∂ ∂ 1 3 3 1 1 2 2 1 3 1 1 3 2 1 1 2 j z B A z A B x B A x A B z B A z A B x B A x A B             ∂ ∂ + ∂ ∂ −       ∂ ∂ + ∂ ∂ −       ∂ ∂ + ∂ ∂ +       ∂ ∂ + ∂ ∂ + 2 3 3 2 2 1 1 2 3 2 2 3 2 1 2 1 k y B A y A B x B A x A B y B A y A B x B A x A B               ∂ ∂ + ∂ ∂ −       ∂ ∂ + ∂ ∂ −         ∂ ∂ + ∂ ∂ +       ∂ ∂ + ∂ ∂ + 3 2 2 3 3 1 1 3 2 3 3 2 1 3 3 1 = ( ) ( ) ( ) ( ) ( ) ( ) k y BABA x BABA j z BABA x BABA i z BABA y BABA         ∂ −∂ + ∂ −∂ +       ∂ −∂ + ∂ −∂ −         ∂ −∂ + ∂ −∂ 322331133223122113311221 = ( ) ( ) ( ) ( ) ( ) ( ) k y BABA x BABA j z BABA x BABA i z BABA y BABA         ∂ −∂ − ∂ −∂ +       ∂ −∂ − ∂ −∂ −         ∂ −∂ − ∂ −∂ 233231132332122131131221 = RHS RHS = LHS 6 ∴ ∇x(AxB) = (B.∇)A - B(∇.A) - (A.∇)B + A(∇.B) (11) Prove ∇(A.B) = (B.∇)A + (A.∇)B + Bx(∇xA) + Ax(∇xB) ∇(A.B) = ( ) 332211 BABABAk z j y i x ++         ∂ ∂ + ∂ ∂ + ∂ ∂ = LHS (B.∇)A = ( ) kAjAiA z B y B x B 321321 ++         ∂ ∂ + ∂ ∂ + ∂ ∂ ( )               ∂ ∂ − ∂ ∂ +       ∂ ∂ − ∂ ∂ −         ∂ ∂ − ∂ ∂ ++=∇ k y A x A j z A x A i z A y A xkBjBiBxABx 121323 321 )( = y A x A x A z A z A y A BBB k j i ∂ ∂ − ∂ ∂ ∂ ∂ − ∂ ∂ ∂ ∂ − ∂ ∂ 123123 321 = kB z A y A B x A z A jB z A y A B y A x A iB x A z A B y A x A               ∂ ∂ − ∂ ∂ −       ∂ ∂ − ∂ ∂ +               ∂ ∂ − ∂ ∂ −         ∂ ∂ − ∂ ∂ −             ∂ ∂ − ∂ ∂ −         ∂ ∂ − ∂ ∂ 2 23 1 31 3 23 1 12 3 31 2 12 Similarly, by interchanging the variable of A and B, we have (A.∇)B = ( ) kBjBiB z A y A x A 321321 ++         ∂ ∂ + ∂ ∂ + ∂ ∂ ( )               ∂ ∂ − ∂ ∂ +       ∂ ∂ − ∂ ∂ −         ∂ ∂ − ∂ ∂ ++=∇ k y B x B j z B x B i z B y B xkAjAiAxBAx 121323 321 )( = y B x B x B z B z B y B AAA k j i ∂ ∂ − ∂ ∂ ∂ ∂ − ∂ ∂ ∂ ∂ − ∂ ∂ 123123 321 = kA z B y B A x B z B jA z B y B A y B x B iA x B z B A y B x B               ∂ ∂ − ∂ ∂ −       ∂ ∂ − ∂ ∂ +               ∂ ∂ − ∂ ∂ −         ∂ ∂ − ∂ ∂ −             ∂ ∂ − ∂ ∂ −         ∂ ∂ − ∂ ∂ 2 23 1 31 3 23 1 12 3 31 2 12 Hence (B.∇)A + Bx(∇xA) = k z A B z A B z A Bj y A B y A B y A Bi x A B x A B x A B       ∂ ∂ + ∂ ∂ + ∂ ∂ +         ∂ ∂ + ∂ ∂ + ∂ ∂ +       ∂ ∂ + ∂ ∂ + ∂ ∂ 2 2 1 1 3 3 3 3 1 1 2 2 3 3 2 2 1 1 (A.∇)B + Ax(∇xB) = k z B A z B A z B Aj y B A y B A y B Ai x B A x B A x B A       ∂ ∂ + ∂ ∂ + ∂ ∂ +         ∂ ∂ + ∂ ∂ + ∂ ∂ +       ∂ ∂ + ∂ ∂ + ∂ ∂ 2 2 1 1 3 3 3 3 1 1 2 2 3 3 2 2 1 1 7 (B.∇)A + (A.∇)B + Bx(∇xA) + Ax(∇xB) = ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) k z BA z BA z BA j y BA y BA y BA i x BA x BA x BA       ∂ ∂ + ∂ ∂ + ∂ ∂ +         ∂ ∂ + ∂ ∂ + ∂ ∂ +       ∂ ∂ + ∂ ∂ + ∂ ∂ 221133331122332211 = ( ) ( ) ( ) k z BABABA j y BABABA i x BABABA ∂ + + ∂ + ∂ + + ∂ + ∂ + + ∂ 332211332211332211 = ( ) 332211 BABABAk z j y i x ++         ∂ ∂ + ∂ ∂ + ∂ ∂ = RHS LHS = RHS ∴ ∇(A.B) = (B.∇)A + (A.∇)B + Bx(∇xA) + Ax(∇xB) (12) Prove ∇.(∇ φ ) = ∇ 2 φ ∇.(∇ φ ) =         ∂ ∂ + ∂ ∂ + ∂ ∂         ∂ ∂ + ∂ ∂ + ∂ ∂ z k y j x i z k y j x i φφφ . = φ φφφ 2 2 2 2 2 2 2 ∇= ∂ ∂ + ∂ ∂ + ∂ ∂ zyx ∴ ∇.(∇ φ ) = ∇ 2 φ (13) Prove ∇x(∇ φ ) = 0 ∇x(∇ φ ) =         ∂ ∂ + ∂ ∂ + ∂ ∂         ∂ ∂ + ∂ ∂ + ∂ ∂ z k y j x ix z k y j x i φφφ = zyx zyx kji ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ φφφ = ( ) ( ) ( ) kji xyyxxzzxyzzy φφφφφφ −+−−− Since φ has continuous second order partial derivatives, we have φ xy = φ yx φ yz = φ zy φ zx = φ xz ∴ ∇x(∇ φ ) = 0 8 (14) Prove ∇.(∇xA) = 0 ∇.(∇xA) =               ∂ ∂ − ∂ ∂ +       ∂ ∂ − ∂ ∂ −         ∂ ∂ − ∂ ∂         ∂ ∂ + ∂ ∂ + ∂ ∂ k y A x A j z A x A i z A y A z k y j x i 121323 . =         ∂∂ ∂ − ∂∂ ∂ +         ∂∂ ∂ − ∂∂ ∂ −         ∂∂ ∂ − ∂∂ ∂ zy A zx A yz A yx A xz A xy A 1 2 2 2 1 2 3 2 2 2 3 2 = 0 ∴ ∇.(∇xA) = 0 (15) Prove ∇x(∇xA) = ∇(∇.A) - ∇ 2 A ∇x(∇xA) =               ∂ ∂ − ∂ ∂ +       ∂ ∂ − ∂ ∂ −         ∂ ∂ − ∂ ∂         ∂ ∂ + ∂ ∂ + ∂ ∂ k y A x A j z A x A i z A y A x z k y j x i 121323 = y A x A x A z A z A y A zyx k j i ∂ ∂ − ∂ ∂ ∂ ∂ − ∂ ∂ ∂ ∂ − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 123123 = k yz A y A x A xz A j z A zy A xy A x A i xz A z A y A yx A         ∂∂ ∂ + ∂ ∂ − ∂ ∂ − ∂∂ ∂ +         ∂ ∂ + ∂∂ ∂ − ∂∂ ∂ − ∂ ∂ −         ∂∂ ∂ + ∂ ∂ − ∂ ∂ − ∂∂ ∂ 2 2 2 3 2 2 3 2 1 2 2 2 2 3 2 1 2 2 2 2 3 2 2 1 2 2 1 2 2 2 = LHS ∇(∇.A) - ∇ 2 A = ( ) kAjAiA zyxz A y A x A z k y j x i 321 2 2 2 2 2 2 321 ++         ∂ ∂ + ∂ ∂ + ∂ ∂ −         ∂ ∂ + ∂ ∂ + ∂ ∂         ∂ ∂ + ∂ ∂ + ∂ ∂ = k y A x A zy A zx A j z A x A yz A yx A i z A y A xz A xy A         ∂ ∂ − ∂ ∂ − ∂∂ ∂ + ∂∂ ∂ +         ∂ ∂ − ∂ ∂ − ∂∂ ∂ + ∂∂ ∂ +         ∂ ∂ − ∂ ∂ − ∂∂ ∂ + ∂∂ ∂ 2 3 2 2 3 2 2 2 1 2 2 2 2 2 2 2 3 2 1 2 2 1 2 2 1 2 3 2 2 2 = RHS LHS = RHS ∴ ∇x(∇xA) = ∇(∇.A) - ∇ 2 A . 1 Formulae involving ∇ Vector Identities with Proofs: Nabla Formulae for Vector Analysis 李国华 (Kok-Wah LEE) @ 08. RHS = LHS 6 ∴ ∇x(AxB) = (B .∇) A - B (∇. A) - (A .∇) B + A (∇. B) (11) Prove ∇( A.B) = (B .∇) A + (A .∇) B + Bx(∇xA) + Ax(∇xB) ∇( A.B) = ( ) 332211 BABABAk z j y i x ++         ∂ ∂ + ∂ ∂ + ∂ ∂

Ngày đăng: 22/03/2014, 16:22

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN