1. Trang chủ
  2. » Giáo án - Bài giảng

2016 complex analysis problems solutions

102 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 102
Dung lượng 0,91 MB

Cấu trúc

  • 1.1 Basic algebraic and geometric properties 7 (8)
  • 1.2 Modulus 13 (14)
  • 1.3 Exponential and Polar Form, Complex roots 16 (17)
  • 2.1 Basic notions 21 (22)
  • 2.2 Limits, Continuity and Differentiation 35 (36)
  • 2.3 Analytic functions 39 (40)
    • 2.3.1 Harmonic functions (46)
  • 3.1 Contour integrals 49 (50)
  • 3.2 Cauchy Integral Theorem and Cauchy Integral Formula 55 (56)
  • 3.3 Improper integrals 71 (72)

Nội dung

Title See discussions, stats, and author profiles for this publication at https www researchgate netpublication280722238 Complex Analysis Problems with solutions Book August 2016 CITATIONS 0 READS.

Basic algebraic and geometric properties 7

Proof Letz=x+yiwithx=Re(z)andy=Im(z) Then

Re(iz) =Re(−y+xi) =−y=−Im(z) and

Im(iz) =Im(−y+xi) =x=Re(z).

4 Verify the associative law for multiplication of complex numbers That is, show that

Proof Letz k =x k +iy k fork=1,2,3 Then

6 Let f be the map sending each complex number z=x+yi−→ x y

Proof Letz k =x k +y k ifork=1,2 Then z 1 z 2 = (x 1 +y 1 i)(x 2 +y 2 i) = (x 1 x 2 −y 1 y 2 ) +i(x 2 y 1 +x 1 y 2 ) and hence f(z 1 z 2 ) x 1 x 2 −y 1 y 2 x 2 y 1 +x 1 y 2

Sincei k = (−1) m fork=2meven andi k = (−1) m ifork=2m+1 odd,

8 Graph the following regions in the complex plane:

9 Find all complex solutions of the following equations:

(c) z= 9 z. Solution (a) Letz=z+iy Thus z = z x+iy = x+iy x−iy = x+iy

Hence,z=zif and only if Imz=0.

(b) Letz=z+iy Thus z+z = 0 x+iy+z+iy = 0 x−iy+x+iy = 0

Hence,z+zif and only if Rez=0.

(c) In this part we have z= 9 z ⇐⇒ zz=9 ⇐⇒ |z| 2 =9 ⇐⇒ |z|=3.

Hence,z= 9 z if and only if|z|=3

10 Suppose thatz 1 andz 2 are complex numbers, withz 1 z 2 real and non-zero Show that there exists a real numberrsuch thatz 1 =rz 2

Proof Letz 1 =x 1 +iy 1 andz 2 =x 2 +iy 2 withx 1 ,x 2 ,y 1 ,y 2 ∈R Thus z 1 z 2 =x 1 x 2 −y 1 y 2 + (x 1 y 2 +y 1 x 2 )i Sincez 1 z 2 is real and non-zero,z 1 6=0,z 2 6=0, and x 1 x 2 −y 1 y 2 6=0 and x 1 y 2 +y 1 x 2 =0.

Thus, sincez 2 6=0, then z 1 z 2 = x 1 +iy 1 x 2 −iy 2 ãx 2 +iy 2 x 2 +iy 2

By settingr=x 1 x 2 −y 1 y 2 x 2 2 +y 2 2 , we have the result

SinceQ⊂RandRis a field, we have the following:

Note thatb6=0 Thus we have

Modulus 13

Hint: Reduce this inequality to(|x| − |y|) 2 ≥0.

0≤(|Rez|+|Imz|) 2 =|Rez| 2 −2|Rez||Imz|+|Imz| 2

2|Rez||Imz| ≤ |Rez| 2 +|Imz| 2 , and then

|Rez| 2 +2|Rez||Imz|+|Imz| 2 ≤2(|Rez| 2 +|Imz| 2 ).

(|Rez|+|Imz|) 2 ≤2(|Rez| 2 +|Imz| 2 ) =2|z| 2 , and therefore,

3 Sketch the curves in the complex plane given by

(a) {Im(z) =−1}={y=−1}is the horizontal line passing through the point−i. (b) Since

⇔x+y=0, the curve is the linex+y=0.

= 4 3 the curve is the circle with centre at−2/3 and radius 4/3.

|z 2 +z+1| ≤ |z 2 |+|z|+|1|=|z| 2 +|z|+1=R 2 +R+1 by triangle inequality Hence z 4 +iz z 2 +z+1

Proof Since Log(z) =ln|z|+iArg(z)for−π

Ngày đăng: 05/12/2022, 13:50