VNU Journal of Science, Mathematics - Physics 24 (2008) 145-154
Quantum kineticequationinthequantum hadrondynamics
(QHD-I) model
Phan Hong Lien*
100 Hoang Quoc Viet Street, Hanoi, Vietnam
Received 8 August 2008; received in revised form 30 August 2008
Abstract. Within the framework of the Walecka model (QHD-I)[1] the renormalized effective
Dirac equation and thekineticequation for fermion are presented. In fact, the fermion propa-
gator inthe medium is dramatically different from that inthe vacuum. The main feature is the
treating of the fermion distribution in non equilibrium, which depends on the interaction rate
involving temperature.
Keyworks:field Theory, nuclear Theory.
1. Introduction
At present the theoretical study of quantum fields at finite temperature and density turns out
to be more and more important for description of wide variety of physical effects in medium: in
condensed matter [2,3], in stellar astrophysics [3,4], in a QED or QCD plasma [5,6]. The effective
real-time Dirac equationin medium and thekineticequation not only may provide an approximation
beyond two-loop calculations, but also can be treated the correlation effects- those that are extremely
important for physical processes near equilibrium [8].
In this paper we focus on the QHD-I model of non-zero density. We investigate in detail the fermion
propagator and its relaxation and thermalization through the interaction with scalar and neutral vector
mesons inthe matter. Furthermore, thekineticequation for fermion inthe real time is shown the
relation between the fermion distribution and the interaction rate.
The paper is organized as follows. In Sec. II the QHD-I and the real time formalism are presented. Sec.
III is devoted to considering the renormalized effective Dirac equation. In Sec. IV we carry out the
quantum kineticequation for fermion inthe QHD-I. The discussion and conclusion are given in Sec. V.
∗
Tel.: (84-4) 38230469
E-mail: pnhue2000@yahoo.com
145
146 P.H. Lien / VNU Journal of Science, Mathematics - Physics 24 (2008) 145-154
2. Formalism
2.1. TheQuantumHadrondynamics (QHD-I)
We start with the Lagrangian density
L
o
=
¯
Ψ (iγ
µ
∂
µ
− M
0
−gΦ − g
ω
γ
µ
V
µ
) Ψ
+
1
2
∂
µ
Φ∂
µ
Φ −m
2
0
Φ
−
λ
2
4
Φ
4
+
1
2
m
2
W
V
µ
V
µ
−
1
4
F
µν
F
µν
,
(1)
where Ψ, Φ and V
µ
are the field operators of fermion, scalar and vector meson, respectively, and
F
µν
= ∂
µ
V
ν
−∂
ν
V
µ
.
In the medium of finite density (the nuclear matter), the symmetry of the ground state |F yields
F
¯
Ψ
F
= 0; F |Ψ|F = 0,
F |Φ|F = v; F |V
µ
|F = δ
0µ
ω
µ
,
(2)
where v and ω are the independent of space - time coordinate owing to the homogeneity of nuclear
matter.
Adding to (2.1) a term, for example
L
0
→ L = L
0
+ cΦ,
which leads to an explicit chiral symmetry breaking.
By shifting the scalar and vector fields Φ and V
µ
respectively
Φ ⇒ v + Φ; V
µ
⇒ δ
0µ
ω
µ
+ W
µ
, (3)
the Lagrangian density (1) inthe presence of external sources now takes the form
L =
¯
Ψ (iγ
µ
∂
µ
− M
N
− gΦ − g
ω
γ
µ
W
µ
) Ψ
+
1
2
(∂
µ
Φ)
2
− m
2
Φ
2
−λ
2
vΦ(Φ
2
+ v
2
) −
λ
2
4
(Φ
4
+ v
4
)
+
1
2
m
2
W
W
µ
W
µ
−g
ω
¯
Ψγ
µ
δ
0µ
ω
µ
Ψ −
1
4
F
µν
F
µν
+ ¯ηΨ +
¯
Ψη + J
φ
Φ + J
µ
W
µ
+ c(v + Φ),
(4)
where
M
N
= M
0
+ gv; m
2
φ
= m
2
0
+ 3λ
2
v
2
(5)
are the masses of nucleons and scalar meson inthe medium. The QHD - I is a renormalizable model.
In the exact chiral limit, the parameter c = 0.
Now, we write the bare fields and sources in terms of the renormalized quantities (referred to a subscript
r by introducing the wave function renormalization constants Z
ψ
, Z
φ
, Z
ω
, the vertex renormalization
Z
g
, Z
gω
, Z
λ
and the mass counter-terms δM, δm, δm
W
) as follows
Ψ =Z
1/2
ψ
Ψ
r
, Φ = Z
1/2
φ
Φ
r
,
¯
Ψ =Z
1/2
ψ
¯
Ψ
r
, (W
µ
, ω
µ
) = Z
1/2
ω
(W
µ
r
, ω
µ
r
),
(6)
P.H. Lien / VNU Journal of Science, Mathematics - Physics 24 (2008) 145-154 147
the external sources
η =Z
−1/2
ψ
η
r
, J
φ
= Z
−1/2
φ
J
r
,
¯η =Z
−1/2
ψ
¯η
r
, L
µ
= Z
−1/2
ω
J
µ
r
,
(7)
the coupling constants
g
r
=gZ
1/2
φ
Z
ψ
/Z
g
, g
r
ω
= g
ω
Z
1/2
g
ω
,
λ
2
r
=λ
2
Z
2
φ
/Z
λ
, c
r
= cZ
1/2
φ
,
(8)
and the masses
M
N
= (M + δM )/Z
ψ
, m
2
φ
= (m
2
+ δm
2
)/Z
φ
, m
2
ω
= (m
2
W
+ δm
2
W
)/Z
ω
, (9)
where M, m
2
and m
2
ω
are the renormalized masses.
With the above definitions, the Lagrangian (4) can be rewritten as (we have suppressed the subscript
r for notational simplicity)
L
QHD−I
= L
MF
+ L
L
+ L
source
+ L
SB
, (10)
where
L
MF
= −
1
4
λ
2
Z
λ
v
2
+
m
2
W
+ δm
2
W
2
W
µ
W
µ
(11)
L
L
=
¯
Ψ [iZ
ψ
γ
µ
∂
µ
−( M + δ
µ
) −gZ
g
Φ] Ψ
−g
ω
Z
g
ω
¯
Ψγ
µ
(ω
µ
+ W
µ
)Ψ −
m
2
W
+ δm
2
W
2
(ω
µ
ω
µ
+ 2W
µ
W
µ
) (12)
+
1
2
Z
φ
(∂
µ
Φ)
2
−( m
2
+ δm
2
)Φ
2
− λ
2
Z
λ
vΦ(Φ
2
+ v
2
)
−
1
4
λ
2
Z
λ
(Φ
4
+ v
4
) −
1
4
Z
ω
F
µν
F
µν
+ c(Φ + v)
L
source
=¯ηΨ +
¯
Ψη + J
φ
Φ + J
µ
W
µ
(13)
or, equivalently
L
QHD−I
=
¯
Ψ (iγ
µ
∂
µ
−M) Ψ +
1
2
(∂
µ
Φ)
2
− m
2
Φ
2
−g
¯
ΨΦΨ + g
ω
¯
Ψγ
µ
(ω
µ
+ W
µ
)Ψ −
1
2
m
2
W
(ω
µ
+ W
µ
)
2
−
1
4
λ
2
v
2
−
1
4
(Φ
4
+ v
4
) −
1
4
F
µν
F
µν
+
1
2
δ
φ
(∂
µ
Φ)
2
− δm
2
Φ
2
+
¯
Ψ [iδ
ψ
γ
µ
∂
µ
−δM] Ψ
−gδ
g
¯
ΨΦΨ −
1
4
λ
2
δ
λ
v
2
−
1
4
δ
λ
(Φ
4
+ v
4
) −
1
4
δ
ω
F
µν
F
µν
−g
ω
δ
g
ω
¯
Ψγ
µ
(ω
µ
+ W
µ
)Ψ −
1
2
δ
µν
(ω
µ
+ W
µ
)
2
+ ¯ηΨ +
¯
Ψ + J
φ
Φ + J
µ
W
µ
+ c(Φ + v),
(14)
148 P.H. Lien / VNU Journal of Science, Mathematics - Physics 24 (2008) 145-154
where g, g
ω
and λ are the renormalized Yukawa couplings, and the terms
δ
ψ
= Z
ψ
− 1, δ
φ
= Z
φ
−1, δ
ω
= Z
ω
−1, (15)
δM = Z
ψ
M
N
−M, δm
2
= Z
φ
m
2
φ
−m
2
, δm
2
W
= Z
ω
m
2
ω
− m
2
W
, (16)
δ
g
= Z
g
−1, δ
g
ω
= Z
g
ω
− 1, δ
λ
= Z
λ
−1, (17)
Z
g
= 1 +
δM
M
, Z
g
ω
= Z
ψ
1 +
δm
2
ω
m
2
ω
, Z
λ
= 1 +
δm
2
m
2
. (18)
The renormalization conditions for the self - energies
Σ(k) =
¯
Σ(k) + δM − γ
k
¯
k
µ
(Z
ψ
− 1) =
¯
Σ(k) + δM −δ
ψ
k, (19)
Π(k) =
¯
Π(k) + δm
2
− k
2
(Z
φ
− 1) =
¯
Π(k) + δm
2
−δ
φ
k
2
, (20)
Π
µν
(k) =
¯
Π
µν
(k) −g
µν
δm
2
W
− (k
µ
k
ν
−k
2
g
µν
)(Z
ω
−1) (21)
=
¯
Π
µν
(k) −g
µν
δm
2
W
− δ
ω
(k
µ
k
ν
−k
2
g
µν
),
where
¯
Σ,
¯
Π,
¯
Π
µν
are ”unrenormalized” self-energies the (spinor) fermion, scalar meson and vector
meson, respectively, and in (18) we introduced
¯
k
µ
= k
µ
−g
ω
Z
g
ω
Z
ψ
W
µ
. (22)
The renormalization conditions are imposed on the self - energies as follows
Σ(k/ = µ
N
) =0,
∂Σ
∂k/
(k/ = µ
N
) = 0, (23)
Π(k
2
= µ
2
φ
) =0,
∂Π
∂k
2
(k
2
= µ
2
φ
) = 0, (24)
Π
µν
(k
2
= µ
2
ω
) =0,
∂Π
µν
∂k
2
(k
2
= µ
2
ω
) = 0, (25)
here µ
N
, µ
φ
and µ
ω
are the renormalization points.
The set of Dyson equations for propagators take the form
S =S
o
+ S
o
ΣS, (26)
G =G
o
+ G
o
ΠG, (27)
D
µν
=D
µν
o
+ D
µ
oλ
Π
λρ
D
ν
ρ
, (28)
where
k
µ
D
µν
(k) =
k
v
m
2
W
+ δm
2
W
, (29)
k
µ
Π
µν
(k) = − k
v
δm
2
W
, k
µ
¯
Π
µν
(k) = 0 (30)
2.2. Theequation of motion for scalar and vector mesons
From the Lagrangian (1), one gets
δL
δΦ
=
Z
φ
✷ + (m
2
φ
+ δm
2
φ
)
Φ = J
φ
=
j −iS
φ
, (31)
P.H. Lien / VNU Journal of Science, Mathematics - Physics 24 (2008) 145-154 149
where
j
φ
=
δL
CT
δΦ
= c, (32)
iS
φ
=
δL
L
δΦ
= gZ
g
¯
ΨΨ + λ
2
Z
λ
(2vΦ
2
+ v
2
+ Φ
3
), (33)
and
δL
δω
µ
= Z
ω
✷ + (m
2
ω
+ δm
2
ω
)ω
µ
= J
µ
ω
= −j
µ
ω
+ iS
µ
ω
, (34)
where
j
µ
ω
=W
µ
(m
2
W
+ δm
2
W
) =
δL
CT
δW
µ
, (35)
iS
µ
ω
=
δL
L
δW
µ
= g
ω
Z
g
ω
¯
Ψγ
µ
Ψ. (36)
Eqs.(31) and (34) determine ”unrenormalized” source J
φ
and J
µ
ω
. The conditions
F |Φ|F = 0, F |ω
µ
|F = 0 (37)
imply
J
φ
= j
φ
− iS
φ
= 0, −J
µ
ω
= j
µ
ω
−iS
µ
ω
= 0 (38)
or, equivalently
−J
µ
ω
= W
µ
(m
2
W
+ δm
2
W
) −
g
ω
Z
g
ω
Z
ψ
J
µ
B
= 0, (39)
where J
µ
B
= (ρ, j
B
) is the baryon current inthe medium
W
µ
=
g
ω
Z
ψ
1 +
δm
2
W
m
2
W
Z
ψ
m
2
W
+ δm
2
W
J
µ
B
=
g
ω
m
2
ω
J
µ
B
(40)
2.3. The free real-time Green’s funct ions in momentum space
1. Scalar propagators inthe real-time formalism are defined as
G
++
o
(k, t, t
′
) =G
>
o
(k, t, t
′
)θ(t −t
′
) + G
<
o
(k, t, t
′
)θ(t
′
−t), (41)
G
−−
o
(k, t, t
′
) =G
>
o
(k, t, t
′
)θ(t
′
− t) + G
<
o
(k, t, t
′
)θ(t − t
′
), (42)
G
−+
o
(k, t, t
′
) =G
>
o
(k, t, t
′
), (43)
G
+−
o
(k, t, t
′
) =G
<
o
(k, t, t
′
), (44)
G
>
o
(k, t, t
′
) =i
d
3
xe
−ikx
Φ(x, t)Φ(0, t
′
)
=
i
2ω
k
[1 + n
B
(ω
k
)] e
−iω
k
(t−t
′
)
+ n
B
(ω
k
)e
iω
k
(t−t
′
)
(45)
G
<
o
(k, t, t
′
) =i
d
3
xe
−ikx
Φ(0, t
′
)Φ(x, t)
=
i
2ω
k
n
B
(ω
k
)e
−iω
k
(t−t
′
)
+ [1 + n
B
(ω
k
)] e
iω
k
(t−t
′
)
(46)
where ω
k
=
√
k
2
+ m
2
, and n
B
(ω) =
1
e
βω
−1
is the Bose - Einstein distribution.
150 P.H. Lien / VNU Journal of Science, Mathematics - Physics 24 (2008) 145-154
2. Fermion propagators (zero fermion chemical potential) are defined by
S
++
o
(k, t, t
′
) =S
>
o
(k, t, t
′
)θ(t − t
′
) + S
<
o
(k, t, t
′
)θ(t
′
− t), (47)
S
−−
o
(k, t, t
′
) =S
>
o
(k, t, t
′
)θ(t
′
−t) + S
<
o
(k, t, t
′
)θ(t − t
′
), ( 48)
S
−+
o
(k, t, t
′
) =S
>
o
(k, t, t
′
), (49)
S
+−
o
(k, t, t
′
) =S
<
o
(k, t, t
′
), (50)
S
>
o
(k, t, t
′
) = − i
d
3
xe
−ikx
Ψ(x, t)
¯
Ψ(0, t
′
)
= −
i
2¯ω
k
(γ
o
¯ω
k
− γk + M) [1 − n
F
(¯ω
k
)] e
−i¯ω
k
(t−t
′
)
(51)
+ (γ
o
¯ω
k
+ γk − M) n
F
(¯ω
k
)e
i¯ω
k
(t−t
′
)
S
<
o
(k, t, t
′
) =i
d
3
xe
−ikx
¯
Ψ(0, t
′
)Ψ(x, t)
=
i
2¯ω
k
(γ
o
¯ω
k
+ γk − M) n
F
(¯ω
k
)e
−i¯ω
k
(t−t
′
)
(52)
+ (γ
o
¯ω
k
+ γk − M) [1 − n
F
(¯ω
k
)] e
i¯ω
k
(t−t
′
)
where ¯ω
k
=
√
k
2
+ M
2
, and n
F
(ω) =
1
e
βω
+1
is the Fermi - Dirac distribution.
These free propagators given in Eqs.(45), (46) and (51), (52) are thermal because the initial state in
chosen to be in thermal equilibrium and the interaction in assumed to be turned on adiabatically.
3. The renormalized effective diracequation
We aim our effort at the relaxation of inhomogeneous fermion mean field ψ(x, t) = Ψ(x, t)
induced by external source that is adiabatically switched on at t = −∞. At usually, the fermion field
is shifted by
Ψ
±
(x, t) = ψ(x, t) ± ϕ
±
(x, t), (53)
with ϕ
±
(x, t) = 0.
3.1. The Initial Value Problem The effective real time Dirac equation for the mean field of momentum
k reads
[(iγ
o
∂
t
−γk − M) + δ
ψ
(iγ
o
∂
t
− γk) − δ
M
] Ψ(k, t)
−
t
−∞
dt
′
Σ(k, t − t
′
)Ψ(k, t
′
) = −η(k, t),
(54)
where ∂
t
≡
∂
∂t
, Σ(k, t − t
′
) is the retarded fermion self - energy and
Ψ(k, t) ≡
d
3
xe
−ikx
Ψ(x, t) (55)
The source is taken to be switched on adiabatically from t = −∞ and switched off at t = 0 to provide
the initial condition
Ψ(k, t = 0) = Ψ(k, 0); Ψ(k, t < 0) = 0. (56)
P.H. Lien / VNU Journal of Science, Mathematics - Physics 24 (2008) 145-154 151
Introducing an auxiliary quantity χ(k, t − t
′
) defined as
Σ(k, t − t
′
) = ∂
t
′
χ(k, t − t
′
), (57)
and imposing η(k, t > 0) = 0 , we obtain the following equation of motion for t > 0
(iγ
o
∂
t
− γk − M) +δ
ψ
(iγ
o
∂
t
− γk) − χ(k, 0) − δ
M
Ψ
k
(t)
+
t
0
dt
′
χ
k
(t − t
′
)Ψ
k
(t
′
) = 0.
(58)
This equation of motion can be solved by Laplace transform as befits an initial value problem. The
Laplace transformed equation of motion is given by
[iγ
o
s − γk − M + δ
ψ
(iγ
o
s − γk) − δ
M
−χ(k, 0) + s˜χ(s, k)]
˜
Ψ(s, k)
= [iγ
o
+ iδ
ψ
γ
o
+ ˜χ(s, k)]Ψ(k, 0),
(59)
where
˜
Ψ(s, k) ≡
∞
0
dte
−st
Ψ(k, t); ˜χ(s, k) ≡
∞
0
dte
−st
χ(k, t), (60)
with Res > 0.
We can write χ(k, t − t
′
) as
χ(k, t − t
′
) = iγ
o
χ
(0)
(k, t −t
′
) + γkχ
(1)
(k, t −t
′
) + χ
(2)
(k, t − t
′
). (61)
A straightforward calculation leads to the ultraviolet divergences
χ
(1)
(k, 0) ≃
g
2
16π
2
ln
Λ
µ
, χ
(2)
(k, 0) ≃ −
g
2
M
8π
2
ln
Λ
µ
, ˜χ
(0)
(s, k) ≃
g
2
16π
2
ln
Λ
µ
, (62)
where ˜χ
(i)
(s, k), (i = 0, 1, 2) are the Laplace transform of χ
(i)
(k, t), Λ is an ultraviolet momentum
cutoff, µ is an arbitrary renormalization scale.
From Eq.(59), one gets
iγ
o
s − γk − M+δ
ψ
iγ
o
s − δ
ψ
γk −δ
M
− γk
g
2
16π
2
ln
Λ
µ
−
g
2
M
8π
2
ln
Λ
µ
+ s˜χ(s, k)
˜
Ψ(s, k)
= [iγ
o
+ iδ
ψ
γ
o
+ ˜χ(s, k)] Ψ( k, 0).
(63)
The counter-terms δ
ψ
and δ
M
are chosen as
δ
ψ
= −
g
2
16π
2
ln
Λ
µ
+ finite, δ
M
=
g
2
M
8π
2
ln
Λ
µ
+ finite, (64)
and the components of the self-energy are rendered finite
χ(k, 0) + γkδ
ψ
+ δ
M
=fi nite,
˜χ(s, k) + iγ
o
δ
ψ
=fi nite.
(65)
3.2. Renormalized effective Dirac equ ation
Hence, we obtain the renormalized effective Dirac equationinthe medium and the corresponding
initial value problem for the fermion mean field
iγ
o
s −γk − M −
˜
Σ(s, k)
˜
Ψ(s, k) = [iγ
o
+ ˜χ(s, k)] Ψ( k, 0). (66)
Compare with (59), it is easy to derive the form of
˜
Σ(s, k)
˜
Σ(s, k) = χ(k, 0) − s˜χ(s, k), (67)
152 P.H. Lien / VNU Journal of Science, Mathematics - Physics 24 (2008) 145-154
This is the Laplace transform of the renormalized retarded fermion self-energy , which can be written
in its most general form
˜
Σ(s, k) = iγ
o
s˜ε
(0)
(s, k) + γk˜ε
(1)
(s, k) + M ˜ε
(2)
(s, k). (68)
The solution of Eq. (66) is given by
˜
Ψ(s, k) =
1
s
1 + S(s, k)
γk + M +
˜
Σ(0, k)
Ψ(k, 0), (69)
where S(s, k) is the fermion propagator in terms of the Laplace variable s
S( s, k) =
iγ
o
s − γk − M −
˜
Σ(s, k)
−1
= −
iγ
o
s
1 − ˜ε
(0)
(s, k) − γk
1 + ˜ε
(1)
(s, k)
+ M
1 + ˜ε
(2)
(s, k)
s
2
1 − ˜ε
(0)
(s, k)
2
+ k
2
1 + ˜ε
(1)
(s, k)
2
+ M
2
1 + ˜ε
(0)
(s, k)
2
.
(70)
The square of the denominator in eq.(70) is being
det
iγ
o
s −γk − M −
˜
Σ(s, k)
. (71)
The real-time evolution of Ψ(k, t) is obtained by performing this inverse Laplace transform in the
complex s-plane along contour parallel to the imaginary axis.
The denominator can be rewritten inthe form
ω
2
− ω
2
k
− P(ω, k)
, where
P (ω, k) = −2
ω
2
ε
(0)
(ω, k) + k
2
ε
(1)
(ω, k) + M
2
ε
(2)
(ω, k)
=
1
2
T r
γ
0
ω − γk + M
Σ(ω, k)
.
(72)
It is just the lowest order term of effective self-energy imaginary part of P (ω, k) evaluated on the
fermion mass shell.
4. Quantumkineticequation for fermion in QHD - I
Let us denote the distribution function for fermion of momentum k and spin s by ¯n
s,k
(t). Since
for a fixed spin component the matrix elements for transition probabilities are rather cumbersome, we
study the spin - averaged fermion distribution function as ¯n
k
(t) =
1
2
s
¯n
s,k
(t).
For a small departure from thermal equilibrium, one can approximate
Φ
2
and
W
2
by their thermal
equilibrium values
Φ
2
=
d
3
k
(2π)
3
ω
k
n
B
(ω
k
), (73)
W
2
= δ
µν
W
µ
W
ν
=δ
µν
d
3
k
(2π)
3
ω
k
n
µν
B
(ω
k
). (74)
To two - loop order, the Feynman diagrams that contribute to thekineticequation is shown in Fig.1
P.H. Lien / VNU Journal of Science, Mathematics - Physics 24 (2008) 145-154 153
The kineticequation can be derived directly basing on [6]
d
dt
¯n
k
(t) = πg
2
d
3
q
(2π)
3
¯ω
k
¯ω
q
−kq −M
2
2¯ω
q
¯ω
k
ω
p
δ(¯ω
k
+ ¯ω
q
−ω
p
)
×
[n
B
(ω
p
) (1 − ¯n
k
(t)) (1 − ¯n
q
(t)) −(1 + n
B
(ω
p
)) ¯n
k
(t)¯n
q
(t)]
+
δ
µν
n
µν
B
(ω
p
) (1 − ¯n
k
(t)) (1 − ¯n
q
(t)) −
1 + δ
µν
n
µν
B
(ω
p
)
¯n
k
(t)¯n
q
(t)
,
(75)
where p = k + q.
f
f
Φ
t
-ig
t”
-ig
t’k
f
f
wt
−ig
ω
γ
µ
t”
−ig
ω
γ
ν
t’k
Fig. 1. The Feynman diagrams contribute to thekineticequation for fermion’s interaction
up to two loop order. The bold solid line is the fermion propagator S,
the only solid line is the scalar propagator G and the dashed line is the omega propagator D
µν
It is easy to find that the above equation has an equilibrium solution given by ¯n
k
(t) = n
F
(¯ω
k
)
for all momentum k
¯n
F
(t) = n
F
(¯ω
k
) + δ¯n
k
(t), (76)
where
δ¯n
k
(t)
n
F
(¯ω
k
)
<< 1. Retaining linear terms in δ¯n
k
(t) from Eq.(75), one obtains theequation for
δ¯n
k
(t)
d
dt
δ¯n
k
(t) = −Γ(k)¯n
k
(t), (77)
where Γ(k) is the interaction rate, whose inverse characterizes the time scale for the fermion distribution
to approach equilibrium [11]
Γ(k) =πg
2
d
3
q
(2π)
3
¯ω
k
¯ω
q
− kq − M
2
2¯ω
q
¯ω
k
ω
p
δ(¯ω
k
+ ¯ω
q
− ω
p
)
×
[n
B
(ω
p
) + n
F
(¯ω
q
)] +
δ
µν
n
µν
B
(ω
p
) + n
F
(¯ω
q
)
=
g
2
m
2
T
16πk¯ω
k
1 −
4M
2
m
2
ln
1 −e
−β(¯ω
q
+¯ω
k
)
1 + e
−β¯ω
q
q=q
+
q=q
−
+
g
2
m
2
w
T
16πk¯ω
k
1 −
4M
2
m
2
W
ln
1 − e
−β(¯ω
q
+¯ω
k
)
1 + e
−β¯ω
q
q=q
+
W
q=q
−
W
,
(78)
where
q
±
=
m
2
2M
2
k
1 −
2M
2
m
2
±
(k
2
+ M
2
)
1 −
4M
2
m
2
, (79)
q
±
W
=
m
2
W
2M
2
k
1 −
2M
2
m
2
W
±
(k
2
+ M
2
)
1 −
4M
2
m
2
W
, (80)
154 P.H. Lien / VNU Journal of Science, Mathematics - Physics 24 (2008) 145-154
with q ∈ (q
−
, q
+
), q
W
∈
q
−
W
, q
+
W
are the support of δ (¯ω
k
−ω
p
+ ¯ω
q
) for fixed k.
The kinetic analysis is implemented directly in real-time and clearly establishes the relation
between the interaction rate inthe relaxation time approximation and the damping rate of the mean
field.
5. Discussion and conclusion
In the above mentioned sections the real time formalism was used to study the fermion propagator
in the matter modeled by the QHD-I model. It could eventually be used in other problems and non
equilibrium processes inthe medium of finite density and temperature.
We have presented and solved the renormalized effective Dirac equation by Laplace transform. The
formulation of the initial value problem yields unambiguous separation of the vacuum and in-medium
effects. We obtained thekineticequation for fermion inthe QHD-I model, including the fermion’s
interaction with the neutral scalar and vector mesons. The fermion distribution in non equilibrium
is investigated. It is proportional to the interaction rate, whose inverse characterizes the time scalar
for the fermion distribution to approach equilibrium. Our next paper is intended to be devoted to the
quantum kineticequation for scalar, pseudoscalar and vector meson inthe QHD.II model.
Acknowledgements. The authors would like to thank Prof. Tran Huu Phat for helpful discussions.
References
[1] B.D.Serot and Walecka, The relativistic nuclear many body problem, Adv. Nucl. Phys. (Plenum Press), (1974) 190.
[2] J.P. Blaizot, E. Iancu, Parwani, Phys. Rev. D 52 (1995) 2543.
[3] T. Kunihiro, T. Muto, T. Takasuka, R. Tamagaki, T. Tatsumi, Various Phases in High- Density Nuclear Matter and
Neutron Stars, Prog. Theor. Phys. Supplement (1993) 112.
[4] G.G. Raffelt, Stars as Labora tories for Fun damental Physics, University of Chicago Press (1996).
[5] D. Boyanovsky, H.J. de Vega, S.Y.Wang, Dynamical Renormalization Group Approach to Quantum Kinetics in Scalar
and Gauge Theories, Phys .Rev. D 61 (2000) 065006.
[6] S.Y.Wang, D. Boyanovsky,H.J. de Vega, D.S. Lee, Real-time Non equilibrium Dynamic in Hot QED Plasmas: Dynamical
Renormalization Group Approach, Phys. Rev. D62(2000) 105026.
[7] R. Baier, R.Kober, Phys. Rev. D50 (1994) 5944.
[8] H. Umezawa, Equilibrium and non equilibrium thermal physics, in Banff/Cap Worksho p on Thermal Field Theory, eds.
F.C. Khanna, R. Kobes, G.Kunstatter and H.Umezawa. World Scientific Singapore (1994).
[9] M.Le Bellac, Thermal Field Theory, Cambridge University Press (1996).
[10] S.Y. Wang, Preprint hep-ph/0007340.
[11] H.A. Weldon, Phys. Rev. D28 (2007) 1983.
. obtained the kinetic equation for fermion in the QHD-I model, including the fermion’s
interaction with the neutral scalar and vector mesons. The fermion. devoted to considering the renormalized effective Dirac equation. In Sec. IV we carry out the
quantum kinetic equation for fermion in the QHD-I. The discussion