Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 24 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
24
Dung lượng
1,08 MB
Nội dung
SỞ GIÁO DỤC VÀ ĐÀO TẠO THANH HOÁ TRƯỜNG THPT LÊ LỢI SÁNG KIẾN KINH NGHIỆM TÊN ĐỀ TÀI: PHÂN LOẠI MỘT SỐ DẠNG TOÁN THƯỜNG GẶP VỀ SỐ PHỨC THEO HƯỚNG PHÁT TRIỂN TƯ DUY TỪ DỄ ĐẾN KHÓ GIÚP HỌC SINH LỚP 12 ÔN THI TỐT Người thực hiện: Đỗ Thị Thủy Chức vụ: Giáo viên SKKN thuộc lĩnh vực (mơn): Tốn THANH HĨA NĂM 2021 MỤC LỤC LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com MỤC LỤC Nội dung Trang MỞ ĐẦU …… 1.1 Lý chọn đề tài ………………………………………………… 1.2 Mục đích nghiên cứu ……………………………………………… 1.3 Đối tượng nghiên cứu …………………………………………… 1.4 Phương pháp nghiên cứu ………………………………………… 1.5 Những điểm SKKN ……………………………………… 2 3 NỘI DUNG SÁNG KIẾN KINH NGHIỆM 2.1 Cơ sở lí luận sáng kiến kinh nghiệm 2.2 Thực trạng vấn đề trước áp dụng sáng kiến kinh nghiệm 2.3 Các giải pháp sử dụng để giải vấn đề 2.3.1 Đặt vấn đề …… 2.3.2 Cơ sở lý thuyết ……………………………………………… 2.3.3 Phân loại số dạng toán thường gặp số phức Dạng 1: Tổng hợp kỹ cộng, trừ, nhân, chia số phức ……… Dạng 2: Phương trình bậc hai với hệ số thực…….……………… Dạng 3: Xác định yếu tố số phức thoả mãn điều kiện cho trước ………………………………………… Dạng 4: Tìm tập hợp điểm biểu diễn số phức … …………… … Dạng 5: GTLN – GTNN mô đun số phức……… ………… 2.4 Hiệu sáng kiến kinh nghiệm hoạt động giái dục, với thân, đồng nghiệp nhà trường 3 4 4 6 KẾT LUẬN, KIẾN NGHỊ - Tài liệu tham khảo - Danh mục đề tài SKKN mà tác giả Hội đồng Cấp Sở GD&ĐT cấp cao đánh giá đạt từ loại C trở lên ……… 12 14 17 18 20 21 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com MỞ ĐẦU 1.1 Lý chọn đề tài : Những năm gần đây, đề thi tốt nghiệp trung học phổ thơng thường xun xuất tốn số phức theo mức độ từ dễ đến khó, đặc biệt từ mơn Tốn kỳ thi tốt nghiệp trung học phổ thơng chuyển sang hình thức thi trắc nghiệm khách quan số phức đề thi trắc nghiệm chiếm tỉ trọng không nhỏ đa dạng kể dạng toán mức độ nhận thức, ln quan tâm đặc biệt học sinh giáo viên Sự xuất câu hỏi số phức nhiều mức độ khác nhận biết, thông hiểu, vận dụng vận dụng cao đề thi tốt nghiệp trung học phổ thơng làm cho khơng học sinh lúng túng muốn phân dạng tập số phức để tìm tịi lời giải Mặt khác với hình thức trắc nghiệm khơng áp lực kiến thức mà áp lực thời gian lớn Chính định hướng cách suy luận lơgic cách giải tốn để tìm đáp án quan trọng làm thi Bên cạnh đó, tài liệu tham khảo cho dạng tốn chưa có xuất rời rạc toán đơn lẻ đề thi thử Do việc tổng hợp, phân loại đưa phương pháp giải dạng toán theo mức độ cần thiết cho học sinh q trình ơn thi tốt nghiệp trung học phổ thông Xuất phát từ thực tế trên, với số kinh nghiệm trình giảng dạy tham khảo số tài liệu, mạnh dạn chọn đề tài “ Phân loại số dạng toán thường gặp số phức theo hướng phát triển tư từ dễ đến khó giúp học sinh 12 ơn thi tốt” nhằm giúp em hiểu có kỹ giải tốt toán số phức để đạt kết tốt kì thi 1.2 Mục đích nghiên cứu : - Góp phần đổi phương pháp dạy học mơn tốn theo hướng phát triển phẩm chất, lực học sinh nhằm phát huy tính tích cực, chủ động sáng tạo học sinh, tăng cường ứng dụng thực tế, giúp học sinh có phương pháp học tốt thích ứng với xu hướng - Giúp cho học sinh nắm chắc kiến thức chương số phức, thành thạo làm toán trắc nghiệm, sử dụng máy tính cầm tay, giúp giáo viên xây dựng chủ đề dạy học cách có hệ thống LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com - Định hướng giải phân loại dạng tập số phức thường gặp theo mức độ từ dễ đến khó giúp học sinh giải toán số phức, đặc biệt toán số phức mức độ vận dụng cách xác nhanh chóng Từ kích thích khả tư duy, ham hiểu biết học sinh môn học 1.3 Đối tượng nghiên cứu : Đối tượng nghiên cứu phân loại số dạng toán thường gặp số phức theo hướng phát triển tư từ dễ đến khó Đối tượng mà tơi hướng đến học sinh lớp 12 ôn thi tốt nghiệp trung học phổ thông 1.4 Phương pháp nghiên cứu : Để thực đề tài này, sử dụng phương pháp sau : 1.4.1 Nghiên cứu tài liệu : - Đọc tài liệu sách, báo, tạp chí giáo dục,… có liên quan đến nội dung đề tài - Đọc SGK, sách giáo viên, loại sách tham khảo Nghiên cứu thực tế : - Dự giờ, trao đổi ý kiến với đồng nghiệp nội dung toán số phức - Tổng hợp kiến thức, kiểm nghiệm qua thực tế dạy học - Tập hợp vấn đề nảy sinh, băn khoăn, lúng túng học sinh q trình giải tốn số phức Từ đề xuất phương án giải quyết, tổng kết thành học kinh nghiệm 1.5 Những điểm SKKN : Đề tài tập trung hướng dẫn học sinh biết cách phân loại số dạng toán thường gặp số phức theo mức độ từ dễ đến khó thường gặp đề thi Đề tài ý rèn luyện cho học sinh kỹ quan sát, phán đoán hướng làm tư sáng tạo để giải toán NỘI DUNG SÁNG KIẾN KINH NGHIỆM 2.1 Cơ sở lý luận sáng kiến kinh nghiệm : Để thực tốt Chương trình mơn Tốn Chương trình GDPT 2018 theo hướng phát triển phẩm chất, lực học sinh đòi hỏi giáo viên học sinh phải nỗ lực Từ hình thành phát triển lực toán học bao gồm lực tư lập luận tốn học, lực mơ hình hố tốn học, lực giải LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com vấn đề toán học, lực giao tiếp tốn học, lực sử dụng cơng cụ, phương tiện học tốn Góp phần hình thành phát triển học sinh phẩm chất chủ yếu lực chung theo với mức độ phù hợp với môn học Nhằm phục vụ cho lý luận dựa theo lý luận : bồi dưỡng cho học sinh kiến thức vấn đề sau tạo cho học sinh khả tự học độc lập suy nghĩ, từ học sinh tự phân loại dạng tập theo chun đề Có học sinh dễ dàng làm tốt thi kỳ thi tốt nghiệp THPT 2.2 Thực trạng vấn đề trước áp dụng sáng kiến kinh nghiệm : Với đề thi trắc nghiệm 50 câu mơn Tốn số câu hỏi số phức chiếm tỉ trọng theo mức độ từ nhận biết đến vận dụng cao Các tập liên quan đến chúng nhiều, phong phú đa dạng vừa liên quan đến kiến thức đại số vừa liên quan đến kiến thức hình học phẳng Tốn số phức có nhiều dạng hay khai thác đề thi trắc nghiệm khách quan Đứng trước tốn này, học sinh trường THPT nói chung trường THPT Lê Lợi nói riêng cịn có lúng túng Sáng kiến kinh nghiệm phân loại số dạng toán thường gặp số phức theo mức độ từ dễ đến khó nhằm giúp học sinh giải hiệu gặp toán số phức 2.3 Các giải pháp sử dụng để giải vấn đề : 2.3.1 Đặt vấn đề : Trong q trình ơn thi tốt nghiệp THPT cho học sinh lớp 12 phần Số phức Học sinh chỉ mới giải quyết được một số bài toán mức độ nhận biết, thông hiểu , gặp một số bài toán yêu cầu cao mức độ vận dụng đa số các em chưa đưa được hướng giải quyết ngay, hoặc có em đưa được hướng giải quyết thì giải quyết chậm và chưa triệt để bài toán Vì thực tiễn giảng dạy ơn thi tốt nghiệp THPT, phân loại số dạng tốn thường gặp về sớ phức đề thi nhằm giúp học sinh phát hiện hướng giải quyết các dạng đó đạt kết cao kỳ thi tốt nghiệp THPT tới 2.3.2 Cơ sở lý thuyết : LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Căn vào lý thuyết chương Số phức chương trình bản Giải tích 12 Tơi tóm tắt nội dung lý thuyết sau: Định nghĩa số phức Một số phức biểu thức có dạng , số thực số thỏa mãn , kí hiệu số phức viết gọi đơn vị ảo, gọi phần thực gọi phần ảo số phức Biểu diễn hình học số phức Số phức biểu diễn điểm mặt phẳng tọa độ Phép cộng phép trừ số phức a Tổng hai số phức: * Định nghĩa: Tổng hai số phức phức * Tính chất: Cho + Tính giao hốn: + Tính kết hợp: + Cộng với 0: số + Số phức số phức b Phép trừ hai số phức: * Định nghĩa: Hiệu hai số phức tổng gọi số phức đối , tức là: Phép nhân số phức * Định nghĩa: Tích hai số phức số phức * Tính chất: + Tính chất giao hốn: + Tính chất kết hợp: + Nhân với 1: + Tính chất phân phối ( phép nhân với phép cộng) Số phức liên hợp mô đun số phức a Số phức liên hợp: * Khái niệm: Số phức liên hợp * Một số tính chất số phức liên hợp Ta gọi số phức số phức LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com + + z z' z z' ; + b Mođun số phức: ; + * Định nghĩa: Modun số phức ; + số thực khơng âm kí hiệu * Tính chất: + ;+ ; + Phép chia cho số phức khác a Định nghĩa: + Số phức nghịch đảo số phức + Thương của phép chia ;+ [ 2] ;+ khác số cho khác tích với số phức nghịch đảo , tức b Chú ý: Nếu [ 1] 2.3.3 Phân loại số dạng toán thường gặp số phức : DẠNG 1: TỔNG HỢP KỸ NĂNG CỘNG, TRỪ, NHÂN, CHIA SỐ PHỨC Phương pháp chung : Trong dạng chủ yếu kiểm tra kiến thức rèn luyện kỹ tính toán của học sinh phép toán cộng, trừ, nhân, chia số phức, kết hợp với một số kiến thức khác về modun của số phức, số phức liên hợp, phần thực và phần ảo của số phức Yêu cầu:- Nắm vững các khái niệm và rèn luyện kỹ tính toán chính xác - Biết sử dụng máy tính bỏ túi Casio để tính toán và kiểm tra kết quả VÍ DỤ MINH HỌA Ví dụ 1(Nhận biết) ( Đề minh hoạ lần năm 2021 Bộ GD & ĐT) Cho hai số phức Số phức : A B C D Chọn câu B Ta có : Ví dụ 2 (Thơng hiểu) ( Đề minh hoạ lần năm 2021 Bộ GD & ĐT) LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Cho số phức Mô đun số phức : A B C Chọn câu D Cách ( Tự luận - Dùng tính chất mơ đun tích ) D Cách ( Hỗ trợ máy tính – Trắc nghiệm ) Vào Mode (đối với máy Casio 570) Menu (đối với máy Casio 580) Nhập bấm “ = ” kết Ví dụ 3 (Vận dụng ) ( Đề minh hoạ lần năm 2021 Bộ GD & ĐT) Có số phức z thoả mãn A B Chọn câu C Đặt với C Do đó, ta có hệ Giải hệ nghiệm số ảo ? D hay Bài tập đề nghị : Bài 1[1] : Cho hai số phức A Tính B C D Bài 2[2] : Cho hai số phức , với Biết , khẳng định sau đúng ? A B C D [3] Bài : Trong mặt phẳng phức, gọi A, B, C, D điểm biểu diễn số phức Gọi S diện tích tứ giác ABCD Tính S ? A B C Bài 4 : Cho số phức z thoả mãn phần thực bằng : A B D z số thực Số C có D Kết khác DẠNG 2: PHƯƠNG TRÌNH BẬC HAI VỚI HỆ SỐ THỰC * Căn bậc hai số thực a< : LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com * Giải phương trình bậc hai tập số phức với hệ sớ thực: az +bz+c=0 (a≠0 ; a , b , c ∈ R ) Tính Δ=b −4 ac Nếu Δ> phương trình có hai nghiệm thực phân biệt: b z=− 2a Nếu Δ=0 phương trình có nghiệm thực kép: Nếu Δ< phương trình có hai nghiệm phức: Nhận xét: z 1,2=− z 1,2=− b±√ Δ 2a b±i √|Δ| 2a Phương trình bậc với hệ số thực cũng có định lý Viet Phương trình đa thức bậc n≥1 trường sớ phức có đúng n nghiệm VÍ DỤ MINH HỌA Ví dụ 1(Nhận biết) (Đề thi thử TN THPT Chun Hồng Văn Thụ - Hồ Bình - 2021) Nghiệm phức có phần ảo dương phương trình : A B C D Chọn câu D Ta có Theo u cầu tốn suy nghiệm phức cần tìm Ví dụ (Thông hiểu) (Đề thi thử TN THPT Quế Võ – Bắc Ninh - 2021) Ký hiệu hai nghiệm phức phương trình Giá trị : Chọn câu C A B C D Ta có Ví dụ (Vận dụng ) (Đề thi thử TN THPT Chuyên ĐH Vinh – Nghệ An 2021) Có số nguyên a để phương trình : có nghiệm phức A B Chọn câu A Ta có thoả mãn C ? D LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com + TH1: , phương trình có nghiệm , ( thoả mãn điều kiện + TH2: , phương trình có nghiệm ) , ( thoả mãn điều kiện Vậy có giá trị a thoả mãn điều kiện toán Bài tập đề nghị : Bài 1[4] : Gọi nghiệm phương trình Mơ đun số phức bằng : A B C Bài 2: Với số thực a, b biết phương trình Tính mơ đun số phức D có nghiệm phức A B C Bài 3: Gọi S tổng giá trị thực m để phương trình nghiệm phức thoả mãn Tính S A B C Bài 4: Gọi nghiệm phức phương trình A : B ) C D có D Giá trị D DẠNG 3: XÁC ĐỊNH CÁC YẾU TỐ CƠ BẢN CỦA SỐ PHỨC THOẢ MÃN ĐIỀU KIỆN CHO TRƯỚC Những bài toán dạng này thường cho điều kiện có chứa z, z ,|z| Phương pháp chung: * Cách 1: Đặt z=a+bi (a , b ∈ R ) - Đưa các yếu tố bài toán cho về phương trình ẩn a,b - Dùng các yếu tố hai số phức bằng nhau, modun số phức để đưa về phương trình, hệ phương trình ẩn a,b - Giải phương trình, hệ phương trình được a,b LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com * Cách 2: Đặt ẩn phụ : Đặt Từ giả thiết, ta đưa phương trình ẩn m để giải * Cách 3: Ta dùng cơng thức trắc nghiệm nhanh máy tính Casio hỗ trợ VÍ DỤ MINH HỌA Ví dụ (Nhận biết) (Đề thi thử TN THPT Nguyễn Huệ - Phú Yên - 2021) Số phức z thoả mãn A Chọn câu A : B C D Ta có Ví dụ (Thơng hiểu) Biết A S S số phức thoả mãn B C Chọn câu C Tổng a + b : D H H B Theo đề Bbài ta có : Cách 1(Tự luận) Ta có A A Vậy Cách 2( Hỗ trợ máy tính – Trắc nghiệm ) - Trước tiên ta xây dựng cơng thức trắc nghiệm nhanh: Phương trình dạng K K D D Ta có , thay trở lại (1) ta : Ta có: Ví dụ (Thơng hiểu) ( Đề minh hoạ năm 2018 Bộ GD & ĐT) Cho số phức tổng P = a + b : A Chọn câu D thoả mãn B Phương pháp ẩn phụ : Đặt C Tính D Ta có : Cách 1: 10 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Cách 2: Lời bình: Việc đặt ẩn phụ giải tốn số phức góp phần làm cho lời giải bớt cồng kềnh biến đổi, chí nhanh đến kết Ví dụ (Vận dụng ) (Đề thi thử TN THPT ĐH Hồng Đức – Thanh Hoá 2021) Có số phức z thoả mãn đồng thời điều kiện số ảo ? A B C D Chọn câu C Gọi số phức Ta có: Lại có: số ảo nên Từ (1) (2) Dễ thấy (*) có nghiệm b trái dấu khơng đối nhau, suy b cho hai giá trị a phân biệt Vậy có số phức z thoả mãn yêu cầu tốn Ví dụ (Vận dụng cao) (Đề thi thức TN THPT Bộ GD&ĐT–MĐ 103 - 2018) Có số phức z thoả mãn điều kiện A B C Chọn câu D Đặt ? D , ta có : Xét hàm số , ta có bảng biến thiên : - + 11 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Đường y = - cắt đồ thị hàm số f(a) điểm nên phương trình có nghiệm phân biệt khác ( Mỗi giá trị a cho ta số phức z Vậy có số phức thoả mãn điều kiện ) Bài tập đề nghị : Bài 1[5] : Cho số phức z thoả mãn A B Tìm số phức liên hợp z : C D Bài 2[6] : Số phức z thoả mãn hệ thức A B Bài 3[7] : Tìm số phức z thoả mãn A B C Bài 4[8] : Cho số phức z thoả mãn Tính C là : D D Biết phần thực z a theo a A B C D DẠNG 4: TÌM TẬP HỢP ĐIỂM BIỂU DIỄN SỐ PHỨC Chủ yếu đề cập đến biểu diễn hình học các số phức hoặc tìm điểm, tập hợp điểm biểu diễn số phức thỏa mãn một vài điều kiện nào đó Yêu cầu: - Nắm vững các khái niệm điểm biểu diễn hình học, modun của số phức - Biết vận dụng các kiến thức tổng hợp để biến đổi phương trình, hệ phương trình - Biết sử dụng các kiến thức hình học tọa độ mặt phẳng vào xác định tập hợp điểm biểu diễn số phức Phương pháp chung: * Cách 1: ( Phương pháp đại số ) - Đặt - Đưa các yếu tố bài toán cho về phương trình ẩn a,b - Dùng các yếu tố hai số phức bằng nhau, modun số phức để đưa về phương trình, hệ phương trình ẩn a,b từ đó xác định được hình dạng của tập hợp điểm biểu diễn số phức * Cách 2: ( Phương pháp hình học ) 12 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com - Đặt - Sử dụng độ dài véc tơ, khái niệm modun số phức để đưa về hình học suy tập hợp điểm biểu diễn số phức * Cách 3: ( Trắc nghiệm Casio ) Dùng máy tính Casio để loại trừ phương án sai Tập hợp điểm biểu diễn số phức thường gặp : - Phương trình đường thẳng : - Phương trình đường trịn : - Phương trình đường Elip : VÍ DỤ MINH HỌA Ví dụ (Nhận biết) Tập hợp điểm mặt phẳng Oxy biểu diễn cho số phức z thoả mãn điều kiện z2 số ảo là: A Trục hoành (trừ gốc toạ độ O) B Trục tung (trừ gốc toạ độ O) C Hai đường thẳng y = ±x (trừ gốc toạ độ O) D Đường tròn x2 + y2 = Chọn câu C Gọi z2 số ảo Vậy tập hợp điểm biểu diễn z đường thẳng y = ±x (trừ gốc toạ độ O) Ví dụ (Thơng hiểu) Cho số phức z thoả mãn Tập hợp điểm biểu diễn số phức mặt phẳng toạ độ đường thẳng Phương trình đường thẳng : A B C D Chọn câu D * Cách 1: ( Phương pháp đại số ) Từ Gọi vào giả thiết, ta có : ta có: * Cách 2: ( Phương pháp hình học ) Từ vào giả thiết, ta có : biểu diễn số phức w mặt phẳng phức ta có Gọi biểu diễn số phức Vậy tập hợp điểm M đường trung trực AB có phương trình * Cách 3: ( Trắc nghiệm Casio ) Ta gọi ( ngầm hiểu – không cần ghi ) mà đường thẳng qua điểm phân biệt nên ta vào Mode ( Hoặc Menu ) nhập 13 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com cặp khác đường thẳng thoả mãn giả thiết Bấm bấm CALC - Phương án A: Ta nhập Không thoả mãn Loại A loại B - Phương án C: Ta nhập Khơng thoả mãn Loại C Vậy chọn D Ví dụ (Vận dụng ) (Đề thi thử TN THPT Chuyên KHTN - 2021) Xét số phức z thoả mãn số ảo Biết tập hợp điểm biểu diễn số phức z ln thuộc đường trịn cố định Bán kính đường trịn bằng : A Chọn câu B B Đặt C Gọi D điểm biểu diễn số phức z Ta có: Có W số ảo M thuộc đường trịn tâm I(-1 ; 1), bán kính Bài tập đề nghị : Bài 1[9] : Gọi đường cong (C) tập hợp điểm biểu diễn số phức z thoả mãn (H) hình phẳng giới hạn bở (C) Diện tích hình phẳng (H) bằng : A B C D Bài 2[10] : Xét số phức z thoả mãn điều kiện số thực Biết tập hợp điểm biểu diễn số phức z đường thẳng có phương trình Mệnh đề sau sai ? A B C D [11] Bài : Trong mặt phẳng toạ độ Oxy, tập hợp điểm biểu diễn số phức z thoả mãn : A Một đường parabol C Một đường tròn B Một đường elip D Một đường thẳng Bài 4 : Gọi M điểm biểu diễn số phức z thoả mãn Tìm tất số thực m cho tập hợp điểm M đường tròn tiếp xúc với trục Oy A B C D 14 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com DẠNG 5: GTLN – GTNN CỦA MÔ ĐUN SỐ PHỨC Phương pháp chung: * Cách 1: ( Phương pháp hình học ) - Bước 1: Tìm tập hợp (G) điểm biểu diễn số phức z thoả mãn điều kiện - Bước 2: Tìm số phức z tương ứng với điểm M thuộc (G) cho độ dài đoạn OM ngắn (hoặc dài nhất) * Cách 2: ( Phương pháp đại số - Bất đẳng thức ) - Bước 1: Gọi Suy mô đun số phức cần tìm min, max theo a b - Bước 2: Từ giả thiết ta hệ thức liên hệ a b - Bước 3: Áp dụng bất đẳng thức Cauchy Bunhia Copski để đưa đến kết * Cách 3: ( Trắc nghiệm Casio ) Dùng công thức trắc nghiệm nhanh máy tính Casio Chú ý: Nếu đường thẳng có dạng cần tính ta tham khảo cơng thức : VÍ DỤ MINH HỌA Ví dụ (Vận dụng ) Trong số phức z thoả mãn điều kiện Tìm giá trị nhỏ A B Chọn câu C Cách 1: ( Phương pháp hình học ) Gọi C biểu diễn số phức z D biểu diễn số phức mặt phẳng phức , nên tập hợp điểm M đường trung trực AB có phương trình Ta có : nhỏ Cách 2: ( Phương pháp đại số - Bất đẳng thức ) Gọi Từ giả thiết ta có Áp dụng bất đẳng thức Bunhia Copski, ta có : Cách 3: ( Phương pháp đại số - Khảo sát ) Gọi 15 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Từ giả thiết ta có Cách 4: ( Trắc nghiệm Casio ) Áp dụng cơng thức trắc nghiệm nhanh Nếu đường thẳng có dạng Từ giả thiết Ví dụ 2 (Vận dụng ) (Đề thi thử TN THPT Chuyên Sơn La - 2020) Cho số phức z thoả mãn phức z có mô đun bằng : A B C Chọn câu A Cách 1: ( Phương pháp đại số - Bất đẳng thức ) Đặt Khi ta có : có mơ đun lớn Số D ta có (1) Áp dụng bất đẳng thức Bunhia Copski, ta có : Cách 2: ( Phương pháp hình học vectơ ) Gọi Để IM lớn M cần tìm H cho Suy Cách 3: ( Phương pháp hình học tổng hợp ) Áp dụng định lý hàm số cosin cho ∆OIK, ta có: Sau lại áp dụng định lý hàm số cosin cho ∆OIH, ta có: Cách 4: ( Phương pháp hình học vectơ ) Gọi ta có : 16 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Để ta chọn Do đó: hướng với , với Và Ví dụ 3 (Vận dụng cao ) ( Đề minh hoạ lần năm 2021 Bộ GD & ĐT) Xét hai số phức thoả mãn Giá trị lớn bằng : A Chọn câu B Đặt , B C với D Theo giả thiết : Do : Ta có: nên : Áp dụng bất đẳng thức , ta có ngay : Bài tập đề nghị : Bài 1[12] : Số phức z thoả mãn bao nhiêu ? A B Bài 2[13] : Xét số Khi có mơ đun lớn C D thoả mãn Giá trị nhỏ : A B Bài 3[14] : Xét số số phức mà tai : A C thoả mãn B Gọi đạt giá trị nhỏ giá trị lớn Mô đun C Bài 4[15] : Cho số phức z thoả mãn A D B D Giá trị C : D 2.4 Hiệu sáng kiến kinh nghiệm hoạt động giáo dục, với thân, đồng nghiệp nhà trường : 17 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com * Trước thực đề tài : Tôi cho học sinh lớp 12A3 có lực học trung bình làm kiểm tra sau 15 phút : ĐỀ KIỂM TRA TRƯỚC TÁC ĐỘNG : Câu 1 : Cho số phức z thoả mãn A B Tính C Câu : Cho số phức z thoả mãn diễn số phức : A : D Biết tập hợp điểm biểu đường trịn Bán kính R đường trịn B C D Kết không khả quan sau : Điểm Giỏi Lớp 12A3 Khá TB Yếu SL % SL % SL % SL % 12% 12 29% 16 38% 21% (Sĩ số 42 ) * Sau thực đề tài: Kết thúc đề tài tổ chức cho em học sinh lớp 12A3 làm đề kiểm tra 15 phút với mức độ nâng cao nội dung xác định số phức thoả mãn điều kiện cho trước thuộc dạng có đề tài : ĐỀ KIỂM TRA SAU TÁC ĐỘNG Câu : Biết có số phức z thoả mãn đồng thời hai điều kiện số thực Tích hai số : A B C Câu : Cho số phức z thoả mãn diễn số phức R đường trịn D Biết tập hợp điểm biểu đường tròn Xác định tâm I bán kính A C B D Kết khả quan, cụ thể sau: 18 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Điểm Lớp 12A3 Giỏi Khá TB Yếu SL % SL % SL % SL % 11 26% 19 45% 10 24% 5% (Sĩ số 42 ) Rõ ràng có khác biệt trước sau thực đề tài Như việc phân loại số dạng toán thường gặp số phức theo hướng phát triển tư từ dễ đến khó giúp học sinh lớp 12 làm tốt khả tư phát triển hơn, giúp em tỏ say mê, hứng thú học tập, coi thành công người giáo viên Chắc chắn việc phân loại tập số phức theo hướng phát triển phẩm chất, lực giúp em tự tin học tập thi Tốt nghiệp trung học phổ thông KẾT LUẬN, KIẾN NGHỊ 3.1 Kết luận: * Kết áp dụng: Qua việc thực chuyên đề lớp 12A3 có học lực trung bình khá, kết thu khả quan, giúp học sinh có nhìn tổng qt nhận biết dạng tốn thường gặp số phức phương pháp giải phù hợp, từ có kỹ giải thành thạo toán thuộc chủ đề Tạo cho em khả làm việc độc lập, sáng tạo, phát huy tối đa tính tích cực học sinh theo tinh thần đổi phương pháp Bộ Giáo dục Đào tạo * Tự đánh giá : Sáng kiến có tính khả thi, áp dụng để dạy học toán chuyên đề số phức trường THPT Lê Lợi, Thọ Xuân Qua thực tế áp dụng, thấy em học sinh nắm vững phương pháp, biết cách áp dụng vào toán cụ thể mà hứng thú học tập phần Khi học lớp qua lần thi thử Tốt nghiệp THPT, số học sinh làm số phức đề thi cao hẳn năm trước em không học chuyên đề Trong trình nghiên cứu thực đề tài khơng tránh khỏi thiếu sót, hạn chế, thân mong đồng nghiệp quan tâm, chia sẻ đóng góp ý kiến để đề tài hồn chỉnh hơn, nhằm giúp tơi bước hồn thiện phương pháp 19 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com giảng dạy Đồng thời giáo viên tổ Tốn áp dụng cho học sinh lớp 12 ôn thi tốt nghiệp THPT giảng dạy nhằm giúp cho học sinh có thêm kỹ giải toán số phức 3.2 Kiến nghị: Từ kết nghiên cứu đạt đây, xin mạnh dạn đề xuất số kiến nghị sau: Một là, Sở giáo dục đào tạo: Cần tổ chức tập huấn cho giáo viên nhiều việc đổi phương pháp dạy học hướng phát triển phẩm chất, lực học sinh Hai là, nhà trường: cần tạo điều kiện thuận lợi sở vật chất, trang thiết bị hỗ trợ giáo viên Có chế độ khen thưởng kịp thời giáo viên có nhiều sáng kiến kinh nghiệm trình giảng dạy Ba là, giáo viên: Cần phối hợp nhiều phương pháp dạy học tích cực trình dạy học, đổi phương pháp theo hướng phát triển phẩm chất, lực học sinh nhằm phát huy tính tích cực, chủ động sáng tạo học sinh, tăng cường ứng dụng thực tế, giúp học sinh có phương pháp học tốt thích ứng với xu hướng Giáo viên nên đa dạng hóa hình thức học tập để tránh nhàm chán cho học sinh q trình học XÁC NHẬN Thanh Hóa, ngày 10 tháng năm 2021 CỦA THỦ TRƯỞNG ĐƠN VỊ CAM KẾT KHÔNG COPY Người viết SKKN : Đỗ Thị Thủy TÀI LIỆU THAM KHẢO Báo Toán học Tuổi trẻ từ năm 2018 đến Sách giáo khoa Giải tích 12 – NXB Giáo dục Sách giáo viên Giải tích 12 – NXB Giáo dục 20 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Hướng dẫn ôn thi TN THPT từ năm 2018 -> 2020 Bộ GD&ĐT Chuyên đề số phức vận dụng cao – vận dụng cao Nguyễn Xuân Chung Phân dạng phương pháp giải toán số phức, Lê Hồnh Phị , nhà xuất Đại học Quốc Gia Hà Nội Đề thi minh họa thi TN THPT từ năm 2018 đến năm 2021 môn Toán của bộ GD&ĐT Tuyển tập đề thi thử Tốt nghiệp THPT Quốc gia năm 2020, 2021 trường nước qua Internet [1] Đề thi thử TN THPT Sở GD & ĐT Lào Cai – 2021 [2] Đề thi thử TN THPT Chuyên Lê Hồng Phong – Tp Hồ Chí Minh – 2021 [3] Đề thi thử TN THPT Mai Anh Tuấn – Thanh Hoá – 2021 [4] Đề thi thử TN THPT Chuyên Hạ Long – Quảng Ninh – 2021 [5] Đề thi thử TN THPT Nguyễn Đức Cảnh – Thái Bình – 2021 [6] Đề thi thử TN THPT Quốc Oai – Hà Nội – 2021 [7] Đề thi thử TN THPT Chuyên Ngoại Ngữ - Hà Nội – 2021 [8] Đề thi thử TN THPT Chuyên Võ Nguyên Giáp – Quảng Bình – 2021 [9] Đề thi thử TN THPT Chuyên Quốc học Huế – 2021 [10] Đề thi thử TN THPT Chu Văn An – Thái Nguyên – 2021 [11] Đề thi thử TN THPT Chuyên Đại học Sư phạm Hà Nội – 2021 [12] Đề thi thử TN THPT Chuyên Phan Bội Châu – Nghệ An – 2020 [13] Đề thi thử TN THPT Chuyên Nguyễn Quang Diệu – Đồng Tháp – 2020 [14] Đề thi thử TN THPT Chuyên Đại học Vinh – 2020 [15] Đề thi thử TN THPT Chuyên Quang Trung – Bình Phước – 2021 DANH MỤC CÁC ĐỀ TÀI SÁNG KIẾN KINH NGHIỆM ĐÃ ĐƯỢC HỘI ĐỒNG ĐÁNH GIÁ XẾP LOẠI CẤP PHÒNG GD&ĐT, CẤP SỞ GD&ĐT VÀ CÁC CẤP CAO HƠN XẾP LOẠI TỪ C TRỞ LÊN Họ tên tác giả: Đỗ Thị Thủy Chức vụ đơn vị công tác: Giáo viên Trường THPT Lê Lợi - Thọ Xuân - Thanh Hóa T T Tên đề tài SKKN Cấp đánh giá xếp Kết đánh giá Năm học đánh giá 21 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Nhận dạng tam giác phương pháp sử dụng tam thức bậc hai loại (Phòng, Sở, Tỉnh…) Sở GD&ĐT Thanh Hóa xếp loại (A, B, C) xếp loại C 2008 – 2009 C 2010 – 2011 Sở GD&ĐT Thanh Hóa C 2012 – 2013 Sở GD&ĐT Thanh Hóa C 2014 – 2015 Sở GD&ĐT Thanh Hóa C 2016 – 2017 Sở GD&ĐT Thanh Hóa C 2017 – 2018 tích vơ hướng Hướng dẫn học sinh ơn thi đại học giải số dạng tập cực trị Sở GD&ĐT Thanh Hóa hình học giải tích lớp 12 Giúp học sinh lớp 12 rèn luyện kỹ sử dụng phương pháp tọa độ hóa để giải số tốn hình học khơng gian Hướng dẫn học sinh lớp 12 phân loại số dạng tốn viết phương trình mặt phẳng khơng gian tọa độ Oxyz thường gặp đề thi THPT Quốc gia Rèn luyện cho HS lớp 12 Trường THPT Lê Lợi kỹ giải số dạng toán phương trình mặt cầu phương pháp phân loại thông qua số tập thực hành Hướng dẫn cho học sinh lớp 11 học sinh lớp 12 ôn thi Tốt nghiệp THPT Quốc gia sử dụng số kỹ thuật tìm nghiệm phương trình lượng giác có điều kiện Hướng dẫn học sinh lớp 11 học sinh lớp 12 ôn thi tốt nghiệp THPT Sở 22 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Quốc Gia sử dụng số phương pháp để giải tốn khoảng GD&ĐT Thanh Hóa C 2018 – 2019 cách hình học khơng gian 23 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ... biết học sinh môn học 1.3 Đối tư? ??ng nghiên cứu : Đối tư? ??ng nghiên cứu phân loại số dạng toán thường gặp số phức theo hướng phát triển tư từ dễ đến khó Đối tư? ??ng mà tơi hướng đến học sinh lớp 12 ôn. .. Định hướng giải phân loại dạng tập số phức thường gặp theo mức độ từ dễ đến khó giúp học sinh giải toán số phức, đặc biệt toán số phức mức độ vận dụng cách xác nhanh chóng Từ kích thích khả tư duy, ... tư từ dễ đến khó giúp học sinh lớp 12 làm tốt khả tư phát triển hơn, giúp em tỏ say mê, hứng thú học tập, coi thành cơng người giáo viên Chắc chắn việc phân loại tập số phức theo hướng phát triển