Tuyen tap Cdng trinh Hdi nghj Khoa hge Cff hge Thiiy khi Todn qudc, Phan Thiit, 2008 455 Nghien ciiu khai thac bo dieu khien la huong chieu may nen dong cô tua bin phan luc hang khong Nguyen Minh Xua[.]
Tuyen tap Cdng trinh Hdi nghj Khoa hge Cff hge Thiiy Todn qudc, Phan Thiit, 2008 455 Nghien ciiu khai thac bo dieu khien la huong chieu may nen dong co^ tua bin phan luc hang khong Nguyen Minh Xuan', Pham Ngoc Canh^ Ta Van Nham^ Hoe viin Ky thudt Oiidn su Hoc vien Phdng khdng - Khdng qudn Trudng Sy quan Khdng qudn Tom tdt: Bdl viet dua nghien cim ve dieu khien vdng Id hudng chieu tren mdy nen dgng ca tua bin phan luc hdng khdng Ddy la mgt nhirng phuang phdp bao dam sir Idm viec dn dinh cho dgng ca tua bin a cdc che lam viec Kit qua nghien cuv cho phep ddnh gid cdc tham sd ky thudt vd tai xudt hien tren dgng ca dai tdc dg-dg cao hogt dgng, bao dam an todn vd hieu qua su dung Dat bai toan / / van de xoay Id mdy nen ddng cff tua bin May nen dgc true nhieii tang cd nhieu uu the so vdi may nen mgt tang hoac may nen ly tam Dd la ty sd nen cao, vdng quay it thay doi va ly sd nen thay ddi cdng cac tang nhanh chdng Tuy nhien de dat dugc uu the dd ngudi ta phai giai quyet bang loat cac van de ciia ly thuyet dgng ca dat Neu may nen cd sd tang la Z, qua trinh nhiet dgng bien ddi theo quy luat da bien n, quy luat bao toan khdi lugng cua ddng tir tang den tang Z la C ^^•Ul = const (1) vdi: Cia, c^a - toe dgc true cua ddng qua tang va tang z; O ^- - tham sd tTnh cua mirc nen iing vdi mgt sy bien ddi ciia tham sd muc nen ciia ddng bam ;T^- Ta khao sat mgt so trudng hgp: - Khi vdng quay khdng ddi: Kbi luu lugng khdng G , ^^ (giam) sg lam n^- t ( t a n g ) Theo bilu thuc (I) thi — ^ i Tire la Cza^^^^ (giam nhieu) va Cla C i a i (giam it) Theo dac tinh cac ting may nen thi d eac ting cudi gdc tan ddng tiln nhap mang giam nhanh ban so vdi sy giam gdc tan tang - Khi n ;i const : N I U n i lam giam luu lugng khong ( G ^ ) dan tdi 7t^^ i va n ^ i T h e o bilu thuc (I) thi — ^ T Tire la Cza^ (giam it) va C^A^ C\a (g'am Nghien cuu khai thdc bd dieu khien Id hu&ng chieu mdy nen dcmg cajugbin phdn luc bans khdns 456 nhilu).Nlu tang vdng quay (n T ) lam tang luu lugng khdng ( G ^ ) dan tdi C Tc'i^ t va n^- t Theo bilu thuc (I) thi - ~ i Tue la Cy.ii Cla Cla ^ (giam it) Hinh 1: Tam gidc tdc a tdng Z tru&c vd sau giam C) G^^ - (giam nhilu) va Hinh 2: Tam gidc ldc a tdng 'nr&c vd sau giam C) G ^ Khi thay doi che bay, n= const: (ha cao hoac tang tdc bay): Nhiet ham trude may nen 7, tang len: vdi cdng may nen khdng ddi thi mirc nen giam di (^^^ i vaU^ iy.CzA (giam it) v a C a i i (giam nhilu) Bao dam ddng chay d che tinh toan (hoac gan tinh loan) cua may nen cac chl lam viec khdng tinh toan cua may nen (qua trinh tang giam vdng quay, tdc bay): - Khi khdng xoay la ( « , = const), n=const: giam luu lugng khdng khi, G ^ i ^^K^ '^'^K^n'' ^^" ^' ^^ ^"Đ ^'ã^" "^^t lung la, gdc tiln nhap vec ta tdc tuong ddi VV, ddng vao mang la quay giam (^, i) tang luu lugng khdng khi, G^2 " ^*^\-2 >G^,2 ^^) dan tdi din ddng tren mat bung la, gdc tiln nhap vec ta tdc tuong ddi w, ddng vao mang la quay tang ( /?, T ) Do vay xuat hien nhu ciu gid /?, = const Mudn vay cin thay ddi hudng tdc tuyet ddi c, bang each xoay la hudng chilu ( a, = var) mgt goc J i e c xoay la hudng chilu mgt gdc bao dam ddng chay d chl dg tinh toan ^K' ^Kfn ^° ^^^ say ddng chay khdng tinh toan a ting tilp theo (tham chi chi hinh che tinh toan d nhirng thilt dien nhit djnh), song xoay la lam giam ca ban can thuy dgng va tang hieu suat ,; va muc nen ;,; cua may nen Thdng thudng ngudi ta xoay mgt vai tang la tang dau va ting cudi u,,c,, w,: tdc quay, tdc tuyet ddi va tdc dd tuang ddi ddng tiln nhap ^^K\n ^ ''^° "'^"^ '^ ^tator d che tinh toan Cac gia trj dd thay ddi, cd diu ('), ^^2^^y^2„-^^'^°'^^^(")'^hic >G y N^iiyen Minh Xudn Pham Nsoe Cdnh Ta Vdn Nhdm 457 U|,C|, w,: tde quay, toe tuyet doi va tie tuong ddi ddng tiln nhap ^^K^ u ^ ^^° "^^"S la stator d chl tinh toan Cac gia trj dd thay ddi, cd diu ('), 1)111.11 I o r , y,TV l i m , ; i l i ^ ' l i n h I r t f i l ^ - l O i Hinh 7: Liru thiidl todn xdc dinh ddc tinh tdc dd-dd cao Chieu phuang trinh Euler theo phuang dgc true dgng ca ta dugc lyc dgng phan dgc true bien doi dgng lugng gay ra: P = G.c, - G c V^^ x > F N Hinh Thiet lap phuong trinh Euler Vdi: Pa- Lyc dgng phin dpc true; c,a, c^a- tdc dg dgc true Luc tTnh chenh ap cua trude va sau la: 461 Nguyen Minh Xudn, Pham Ngoc Canh, Ta Vdn Nhdm Pa =2.7i.r„.h.(p, - p , ) Vdi: Pg - Lyc tTnh chenh ap p; r,b- ban kinh trung binh ciia la; b- Chieu cao la; pi, p;- ap suat tTnh trude va sau la: Luc dgng tdng hgp tac dung len vdng ddng bg xoay la budng chieu la: P = P +P' a a Trong qua trinh tinh toan ta cho cao bay H thay ddi tir km den 12 km, tdc bay M thay ddi tir din 0.8, gdc xoay la cp tii' 0*^ din -15'' Toe ddng kbi c, chinh la tdc ddng cua may nen thip ap nhu da tinh loan phan tinh nhiet ddng va dac tinh tdc dd-do cao Tdc dd c^ xac dinh theo cong thuc: qO^:! Gu-VT (m + l).0.0404.P,.F,.sin(90' +(p) Tra bang bam dgng dugc X2 b Xdc dinh irng sudt xodn trin true dieu khiin vdng Id xoay chiiu mdy nen Md hinh tai the hien tren hinh Sau tinh dugc ap lyc dong ta tinh md men xoin tac dung len vdng ddng bd xoay la: M =P.Ltavdon X p M, t M, Hinh 9: Sa tinh tai tde ddng len vdng diiu khUn la hirdng chieu mdy nen Vdi Ltaydon la chilu dai tay ddn ndi la hudng chilu vdi vdng ddng bd Ung suit xoin M^ gay doi vdi true la: T^ - w w^- la mo men chdng xoan He so du ben xoan: k = w = 0,2.D^,(1- a > , , \ l - > 136,7 mm^ Vdi a = D,,/Dng=8,5/10,5-0.8 Luu dd thuat toan hinh 10 Nghien eiru khai thdc bd diiu khien Id hu&ng chiiu mdv nen ddng ea tuabin phdn lue hdns khdng 462 ^ y iBonr y XXa.- I I'tT t I B C T ;:Li-o :; ^ B - ' y L.^—'J Hinh 10: Luu dd thudt todn kiem bin chi Hit bd diiu khien Id hu&ng chieu mdy nin Ket qua Dya theo cac luan diem neu tren, cac budc tinh toan ap dung cho mgt dgng co cu the la dong ca tuabin phan lyc ludng AL-Z da cho cac kit qua tinh sau day: 4.1 Cdc tham sd nhiet ddng ddng cff tua bin phdn lire ludng AI-Z P(Pa) Luong T(K) 1.2 Ddc tinh tdc dg cao ddng cff tua bin phdn lire ludng I!![^iiyen Minh Xudn Pham Nsoe Canh, Ta Vdn Nhdm 463 0,6 M 01 4.3 Tdi tdc ddng len vdng la hu&ng chieu thay ddi theo dgc tinh tdc dg-dg cao 01 02 03 04 0.5 08 0.7 08 0.1 02 0.3 0,4 0.5 0.9 0,7 0.8 500 - Dd thi dp lire tde dung lin vdng la hu&ng chieu 4.4 Kiim bin true diiu khiin xoay Id hu&ng chiiu mdy nen > I 31 J i 1 "- ^""^^^i—-^^ _ "f ' -10 n>(i»> -'•' Biin ddi irng sudt cdt true diiu khiin vd hi sd du bin theo gdc xoay Id mdy nin Nghiin ciru khai thdc bd diiu khiin Id hu&ng chieu mdy nen ddns eo' tuabin phan lue hdns khdng 454 Ket luan Kit qua va cho cac dudng bieu dien hgp quy luat Sai so so vdi thuyet minh ky thuat dudi 6% Cac sai so mgt s6 dac kich thudc, mgt sd tham sd lya chgn va tra dd thj chuan, Qua thj kll qua ta thiy cao cang tang, ap lyc tac dung len vdng la xoay chilu cang giam, ap lyc Idn nhit a cao H=0 Km Tren cao H=0 nay, tdc dp M cang tang thi ap lyc cang tang, ap lyc Idn nhat tai M=0.8 Khi cp cang tang (theo chieu am) ap lyc cang tang, Idn nhit taicp = -15" Vay ap lyc kbi dpng Idn nhal tac dung len vdng la BHA \^=Q^ M=0.8, cp = -15" Khi dd mo men xoan M^ va img suat xoan tren true se Idn nhat Qua kit qua 4: ta thiy a moi cao va tdc bay nhat dinh gdc xoay la cang tang theo hudng ddng cua vao may nen cao ap thi he sd du ben cua true dieu khien ca cau xoay la cang giam Vdi each linh loan luang ty ta cung cd the ket luan he so du ben cua cac bg phan khac be co hoc cung giam Vdi cac phin tu kll ciu hang khdng he sd du ben k > 1.65 nen ket qua thu dugc la hgp ly Theo thuylt minh ky thuat dgng ca Al-Z ap suat nhien lieu cua xi lanh thuy lyc dieu khiln la p > 10 kg/cm"," dudng kinh cua xi lanh Dir= 36,6 mm; dudng kinh ong pitton D = 26 mm Lyc dieu khien cua xi lanh la: Pd > ( D ? - D ^ ) p = N nen neu lay lyc Pji de kiem ben ciing thu dugc ket qua nhu tren Cdng trinh nghien ciiu mgt lan nua cho thay che lam viec cua may bay anh hudng trye tiep den tai xuat hien tren cac phan tu ket cau ddng ca tuabin kbi hang khdng Day ciing la mgt ly de cac nha khai thac lya chgn che lam viec cho phii hgp Lo'i cam on Cdng trinh ndy duoc thirc hiin vdi su hd tro' cua Chuang Irinh nghiin ciru ca ban Tai lieu tham khao [1] Le Quang Minh, "Sire ben vdt lieu " NXB Dai hoc va giao due chu\cn nghicp nam 1998, [2] Ngu>'en Minh Xuan Lc Van Mot, "Iv thuyet dgng ca tua bin hdng khdng" NXB Trudng trung cao khdng quan nam 199.3 (tai ban 2007) [3] Le Van Mot \a cong su "Ket cdu vd bin dgng ca tua bin hdng khdng" NXB Hpc vien khong quan nam 1998, [4] Nguyen Minh Xuan ''Vdt lieu hdng khdng" Hoc vicn Phong khong- Khong Quan nam 2004 [5] Nguyen Minh Xuan va cong su, "Khai thdc vd td chirc bao dam ky thudt hdng khdng ngdnh mdy bay-ddngca" NXB Hoc vicn PK-KQ nam 1999 [6] n,K, KA3Allil>KAH U.J\ THXOHOB, B.T.UiyjIEKHH- "TEOPUU AHBAHHOHHhlX MBIIPATEJIEH" MOKBA TPAHCHOPT - 2000, [7] JIOKAH MKMAKCyTOBA, B A CTPVHKHH: "TASOBblE TYEIIHbl B,H MBIirATE.nEH nETATUlbHhlXAnnAP.4T0B" MOCKBA MAIIIHHOCTPEHHE - 1999 ... dong ca tuabin phan lyc ludng AL-Z da cho cac kit qua tinh sau day: 4.1 Cdc tham sd nhiet ddng ddng cff tua bin phdn lire ludng AI-Z P(Pa) Luong T(K) 1.2 Ddc tinh tdc dg cao ddng cff tua bin phdn... dg-dgcao dgng cff tuabin phdn lire ludng Phuang pbap Nhetraev-Fedorov cai tiln dugc tien banh theo cac budc sau: Nghien ciru khai thdc bd diiu khiin Id hu&ng chieu mdy nen ddns ca tuabin phan hrc... Lc Van Mot, "Iv thuyet dgng ca tua bin hdng khdng" NXB Trudng trung cao khdng quan nam 199.3 (tai ban 2007) [3] Le Van Mot \a cong su "Ket cdu vd bin dgng ca tua bin hdng khdng" NXB Hpc vien khong