1. Trang chủ
  2. » Tất cả

Mức độ hài lòng của sinh viên về chất lượng dịch vụ đào tạo tại khoa kinh tế và quản trị kinh doanh, trường đại học đồng tháp

11 3 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 11
Dung lượng 1,03 MB

Nội dung

TRUONG DAI HOC DONG THAP i Tap chl Khoa hoc so 13 (6 2nv Mifc DQ HAI LONG CUA SINH VIEN VE CHAT Ll/ONG DICH VU DAO IA|) TAI KHOA KINH TE VA QUAN TRI KINH DOANH, TRUTCJNG DAI HOC DONG THAP • ThS Le Thj[.]

Tap chl Khoa hoc so 13 (6.2nv TRUONG DAI HOC DONG THAP i Mifc DQ HAI LONG CUA SINH VIEN VE CHAT Ll/ONG DICH VU DAO IA|) TAI KHOA KINH TE VA QUAN TRI KINH DOANH, TRUTCJNG DAI HOC DONG THAP • T h S Le Thj Loani'', T h S Nguyen Hoang TrungThS Pham Xuan Viei^ Tom tgt Trin cosd ting dting mQt s6md hinh nghiin cliu vi chdt lupng dich vu, chat luang dao tao irm ngodi nudc vii xuat phdt tH nhitng dde diem riing ve dich vu ddo tao ciia Khoa Kinh te vci Qiikii kinh doanh, TrUdng Bai hoe Bong Thdp, bdi bdo chi thuc trqng mdc hai long eUa sinh \'ih& vdi chdt lupng dich vu ddo tao tqi Khoa Kinh t^vd Qudn tri kinh doanh, Trupng Dqi hoc Bong TU^ Tir khoa: Chdt lupng dich vu, ddo tao, sU hai ldng D$t vin d l Bit nifdc ta dang xu the hpi nh^p v^ ph^t tri^n tren t^t ck cdc ITnh vifc cua d(Ji song xa h6i Thirc t^ n^y ddi hoi cdc doanh nghidp, cdc td chiJc phdi luon t6n khdch hdng, mang lai cho khdch hdng si/ hai long cao nhd't khd ndng c6 the Trong ddi song xa hfii, gido due difdc xem Id m6t ngdnh dac biet quan trpng de phdt tiien nguon nhan life eua dat nifdc Gido due dai hpc Id bdc hpc cd nhiem vu ddo tao nguon nhdn life CO ch^t lifdng cao cho xa hdi Viec ddnh gid mpt edeh khdeh quan, chinh xdc sif hdi ldng cfia ngifdi hoc d^i vdi chd't lifdng dich vu ddo tao md cac tnfdng dang cung iJng Id bi6n phdp giup cdc tnrdng ddo tao cd cd sd tif ddnh gid vd ndng cao chd't lifpng dich vu, phU hdp vdi nhu cau cua ngifdi hpe VI vay, nghign clfu ndy nhdm eh! thitc trang ehat lifdng dich vu ddo tap ciia Khoa Kinh tg vd Qudn tri kinh doanh (KT&QTKD), Tnfdng Dai hpc Dong Thap T S chlJc va phifdng phap nghiSn cihi 2.1 Md hinh nghi§n cliru Bi ddnh gid mifc dp hdi long cia smh vien (SV) dSi vdi chd't lifdng dich vu ddo tao tai Khoa KT&QTKD, Tnfdng Bai hpc Dong Thdp chCing tdi sijf dung md hinh SERVPERF (Cronin &Taylor, 1992) [3] Theo do, miic dp hdi ldng cua SV difdc cho Id chiu dnh hifdng cua thdnh phan (vdi 49 tieu chi): Phifdng tien hifu hinh, tin eay, ddp li^g, ndng life phue vu, cdm thong 'I' Khoa Kinh ll vS Q„5„ ni kinh doanh Tradng Dai hoc Dong ThSp 58 Hinh Mo hinh danh gia mi^c d6 hai long cua SV ve chat lu"tfng dich vu dao tao 2.2 To chu'c nghien cii"u De diinh gia mu'c hai long ciia SVdoivi chat liTdng dich vu dao tao tai Khoa KT&QTKD Tru'dng Dai hpc D6ng Thap chiing toi tienliap! nghien cu'u qua giai doan: - Nghien cHu sa bo: Giai doan nghien ciii nham muc di'ch dieu chinh thang phuc cho giai doan nghien cu'u chinh thu'c Chungl* da su' dung phifdng phap nghien cu'u djnh tinhvS cS mlu n = 10 (phu'dng phap chon mau IhuJ! tien) Sau nhieu lan hieu chinh, bang cau hoi cao cung da dUdc hoan thien - Nghien cHu chinh thiie: Nghien cilucliiii thu'c dUdc thiTc hien bang phtfdng ph^p ngtii^ cu'u dinh l^dng Nghien cu'u dinh lUdngnli^^ kiem dinh lai cac thang mo hinhngNi cu'u thong qua bang cau hoi kh^o sSt 2.3 PhiTdng phap nghien cu'u: Thongtii"^ lieu dirpc thu thap thong qua dieu tra cac SV * ' Tap chi Khoa hpc s6 13 (6-2015) O N G DAI HOC DONG THAP iam 2, nam va nam cua Khoa KT&QTKD diTdc chon theo phUdng phip ph^n tang theo ; ket hdp v la qua trinh tiep xue v6i SV.cinlj t6'"Dpi ngii CB-GV" ^ p n phong chtfa that SLT hieu ro SV can gi VeiQi DO Di^m CB-GV, dasoGV Khoa KT&QTKD c6nlie, Idch trung Ti&u cfai danh gia %inh nghiem giang day it dan den viec doiiii STT binh cfauan liing tting viec giai quyet dcii^ huong giang day 3.1.2 Ki't qud ddnh gid miic hailongdi SV ddi vdi yeu id "Ca sd vgt chdt" Bang Mu'c dd h i i long cua SV doi vSiyJ"! to' "Ctf sof v i t c h i t " Giing vidn siJ dung nhieu hlnh thii'c Idem tra d^nh gid mon hoc 3,99 0,95 ThQ tyc hanh chinh ddn giSn, ti6n ldi (dang ki hoc phan, ddng hoc phi, cap hoc bdng, ) 3,94 0,75 GiSng vien dam bao gid lgn ldp, kfe' hoach giing day 3,89 0,92 Cic th6ng tin lien quan ditdc cung cap tdi SV kip thdi, chinh xac Phong hpc rpng rai, thoang mat, dam bao cho ngoi, 3,78 0,83 De cUdng chi tiet cu thl, rd ring ndi dung hgc 3,63 0,95 Thong tin va mu'c dp thudng xuyen cap nhat thong tin tren Website khoa Dl nghi eita SV ludn difdc giing vidn h6i dip nhanh chdng 3,58 1,02 Phong hpc dam bao d§y du am thanh, anh sang, quat Cin bd vin phong ludn sin sing gidp dd SV 3,54 1,07 Phong hpc diTpc trang bi may chieu, man chieu Giing vidn co kien thii'c chuydn mdn chic 3,44 1,11 He thong wifi phu song rpng, du'dng truyen to't DOi ngu CB-GV 3,72 0,63 Diem trung binh Ket qui Bing cho thay, yeu t6 "Dpi ngu CB-GV" difdc SV danh miJc hii long vdi diem trung binh li 3,72 Trong SV dinh gia eao nhi't d v^n d^ "Giing vien sur dung nhieu hmh thiffc kiem dinh gii m6n hoe" vdi diem binh 3,99 C6 nghla SV hii long vi dinh gii eao viec giing vidn suf dung nhieu huih thii'c dinh gii m6n hpc nhiT: ti^u luan, bii tap nhom, bio cio nhom, Ngoii ra, vifn d l 'Thu tuc hinh chinh ddn giin, ti$n ldi (dang ki hpc phan, ddng hpc phi, cap hpe bong, )" cung diidc SV dinh gii cao (dilm trung binh: 3,94) Ben canh do, di cip de'n v^n de "Cin b0 van phong luon sin sing giUp dd SV", "Giing vien c6 kien thiJc chuyen mon chac" thi SV chi dinh gii d muTc thap hdn (diem tiling binh 3,54 60 San bai, can tin, ki tiic xa dat yeu cau 3,49 Cung cap giao trinh, bai giang day dij cho m6i hoc phan 3,35 Giang vien thifdng xuyen su" dung cong nghe thong tin ho trp cho viec giang day 3,31 Thir vien cua Tru'dng dupc trang bi nhieu dau sach chuyen nganh Ctfsof vat chat Ket qua d Bing cho thay yeu to chat" difpc SV danh gia d mu'c hai lonj • vfii Tap chl Khoa hoc s6 13 (6-2015) O N G DAI HCX DONG T H A P I bhih li 3,71 Trong SV dinh gii cao nhat d Bang MiiTc dd hai long cua SV dd'i vcTi y€ii de "Phong hpc rgng rii, thoing mat, dim bio t6 "Chtfofng trinh dao t a o " ngoi, " vdi diem trung hlnh 4,13, diy li miJc Dilm DO r^t cao Ben canh d6, SV dinh gii cl md'c thip trung l^cfa Bie'n R la ham m3ra liSn tuc difdi (x',X-X(i) limsupD lk tap cfla khdng gian X Trong pham vi bai bao nky, chflng toi dac T$p ta't ca cac s-phdp tuye'n cfla Q tai lg dilu kidn can cho nghiem cfla b&i toan X(jei2 dtfdc ki hieu la N^(XQ,Q) Theo dinh thfing qua dtfdi vi phSn theo htfdng Chung nghia ta co lu6n gia thiet X la khSng gian Banach; (x*,x-X(,) x,r) la hinh c l u tam x bdn Mnh r; B lk hinh N^{x„n):= x* &X' |hmsup1 ddn vi cfla X va n(;(o'"):=arginin||x-j:J| la cdc dnh cua phep ehieu vuSng gdc tCf x^, 16n Neu x^ifi thi chflng ta qui tfdc M6t tap n c ^ dtfdc gpi lk dong dia JV^(X(,,n):=0 N6'u s=0 thi chflng ta viet tang xung quanh x n^u t6n tai 13n cSn U I X cho QniC/ la tSp dong Ngoai ra, 7V'(Xo,n) thay iV(,(X(„Q) v^ gpi la ndn phdp : k i h i e u C ^ x — ^ x ^ vk x "'^ >x^ dtfcfc tuyen Frechet h nghia nhtf [3] Non pfidp tuyen qua gidi hgn cfla Q tai Xg B§y giS, chflng toi nh^c lai mot so khai dtfpc kl hieu 1^ N{Xf^,^) va xdc dinh nhtf sau: m sau N{x^, Q) := Lim sup N^ (x, H), Dinh nghTa 1.1 Cho khdng gian Banach vk lap DcX Biim x^eD dtfcfc goi la n^u F:X- • Id mot anh xa da tri tuf liim tdi uu djapfiuang cfla bai todn (P) neu X vao Y thi fveriadayj: I tai sd thtfc r > cho LimsupF( , / ( X o ) < / ( x ) V x G ( X o , r ) n D (1.1) ineNj h-4 NhSn xet 1.3 V&i mgi Xf, e H c X ta cd :hoa Sir pham ToiSn-Tin, Tnfdng Dai hpc Dong TMp Nix„Q)^N(x,,Q) 63 Tap chi Khoa hoc so 13 (6-;o)»f TRUONG Bid HOC DONG THAP qua Idiai niem non phap tuye'n Frechet tiidL: Ngoai ra, mot sS tinh cliat c i a ndn pliap d-ng vdi mot tap nhil sau tuygn Fr6chet va non phap qua gidi lian cung Dinh nghla 1.7 Cho X la mot khong jii, dUdc tic gii ctil [5] Cu tli^ cliung ta cd cac Banach, £ > 0, Q, g la cdc tap ciia X it menh de sau Khi dd vdi moi (5>0, Menh a^ 1.4 Cho \; X, Id cdc khdng gian X ^X Banach, O, Id cde lap eon etia X,, n Id cdc Q^:=Q + SB f5iem v'e X' dtfdc goi la mj tdpconcia X,, i,^Q va x,_eQ, Khidotaco £ -phdp luyen lUang I'Olg rdi lap cQa Jl (i)iV(j,n)=JV(x„n,)xJV():;,n;), (1.2) (2)JV(l,n) = iV(x„n,)x«(j:;,£l,), (1.3) M6nh a^ 1.5 Neu n Id tap loi, x„ Q vd U la mpt ldn can eUa x^ thl A'K,n)={«-e,VK«'.«-^.>=so.v:«s"^c;} d-'*' Trong [5], B S Mordukhovich da dac tnmg tinh chft cua non phip tuye'n qua gidi han u-ong ichdng gian hilu han chieu Tinh chft n^y giiip chung ta thuan ldi hdn viec m6 ti cSc ndn phap niy^n qua gidi han Ichdng gian hOu han chieu Cu thl chdng ta cd dinh li sau Dinh li 1.6 Gid su- x, e n c R" vdi Q Id cdc tap ddng dia phuang quanh Xg Khi dd ta cd cdc khdng dinh sau: ( l ) W ( i „ , n ) = LimsupW(A:,n), (2) JV(x„,n) =Limsup[cone(x-n(3:,n))], dd n(x,Q) Id tap cdc dnh cua phep chieu tx',x-x„) x.eCl neu limsup -^j j— £ s Tap ta't ca cdc s -phdp tuyen luong HIIJIM tap Q cua n tai -V, dtfdc ki hieu la V.„(.i,.ai Theo dinh nghla ta co 7V^o(x„.n);=A',(-v„,n^^(x,+C„)) (IS: Ne'u £ = thi chiing ta vie't W„(i,,ai thay cho N^g(x„,n) va goi la non plidplm Frecliel luang ttng vdi tap Q ciia n tai i N6'u x„ i Cl thi chung ta dat 7V„(x„,n):=0 Non phdp luyen qua gidi hqn lumg rllij vi tdp Q cua n lai ,r„ e fJ ditdc xdc dinli nhllsal N°(x,„a):= Limsup N,gXx,ai (LS Xp nghia la x - leQii limt/ •I'tf cdc tdc gia xay dtfng Idiai niei dtfdi vi phan theo htfdng va xay dtfng moi qui tac tlnh cho dtfdi vi phan theo hifdng q» gidi han mot so trtfdng hdp cij 'h^-J'"! [3], cac tdc gia da thiet lap cac dieu Idenl^ va dli cho mot diem x„ cho trtfdc la nghieml tfu dia phtfdng cho mfit trtfSng hdp cu llie • bai todn (P) J Trong bai bao nay, tren cd sd cac kliJiB!^ non phap myen [2], [3], chiing toi i0,0,x = ( x „ X ; ) e f ta lay x*=(n*,)^)eiV^g_(xi„n) vdi x^nX^.x^eXl, ta tun dtfdc lan can U =U^xU2 cua x cho X £ f i n ( x + C g )r^f/tacd , x , eEn,r-,(:^+Cg^)r^Lf„ tacd Chon G N,^, X| = x^ (i^, QJ ) Khi dd cho ^>0,Xj eQ2ni(x,+Cg^^)nt/2 tacd < £ | | x , - ^ II Suy x' (x;n)-^{(x^,Xj)lXj=X2 + 2x°,Xj£3ellx,-^il; (x^,Xj-^) x „ ta dtfdc (2) Do dd dinh li dtfdc chiing minh D Sau day, chiing toi se xdy dtfng mpt tinh chft ttfdng ttf cho ndn phdp tuyen qua gidi han theo htfdng thdng qua dinh li sau Djnh If 2.4 Gid si x„ G n c R" va ^ c I R " cho Q vd (x^+Cp) Id cdc tap ddng Vi u', -> X, Q- \ va xr G Af H'tGnn(x„+Co)cnn(x„+Cg^^), dja phirtmg xung quanh Xg vd C^+CgizCQ Khi ta cd cdc khdng dinh sau < ^ i n - *t> ^ 2ffj j|w, - x\l Ke't hdp vdi Q ta cd ||xt-w,j|-v' t-^+=c Taseei rang if," G W^ (ir,, £2) vdi mpi kefi M viy, CO dinh A- G N va vdi mpi diem ciio insSi x e n r ^ ( n ' ^ + C p ) idii dd -ve-r^+Co+CpCjCj+f, = (ai,xl +JCj -x,a^xl +x^-w^)-(x^ ~{a^xl + x^ -w^,x-'W^)-{a^xl Chiihg minh Trtfdc tien chdng ta chd'ng minh (1), nghia la chung ta cd thg Hy s,S = u-ong Dinh nghia 2.1 ve ndn phdp tuygn theo htfdng cho tap ddng dia phtfdng khdng gian hifu ban chilu Chd f rang Limsup W,^_(x,n)3LimsupiVg(x,n), Chung ta chi can chflng minh bao ham thflc ngtfdc lai Cg dinh x' eA'j,(x„n) ta tun dtfdc cdc day S^ \0,s^\0, x^ "-^ >x„ va x ; ^ x * cho x;G.W,^g^(xj,n) vdi mpi * s N - V i X = r = K " vd cdc tap n,x„+Ce Id ddng dia phtfdng xung quanh x„ nen vdi moi *eN cho bft ki a>0 ton \\x-i.,f ||x-w,f \6\m XGnn(Wj+Cg) I2,(ii Vdi bd't ki £• > la lim dtfdc lan cii U{w^,s) cua w^ siio cho vdi moi x €[/(ii',.,f| ta cd |x-w^||x„ jt -> +« tacd (1) iVg(x„,n) = Limsup./Vg(x,n), Afjtxi.Si)" u n suy (2.5) Limsup7^g(x,£J)=LimsLip[cone(.r-n(x,f2n(i-i-C;)! Vay dinh li dtfdc chtfng minh Chfl J r^ng Dinh li 2.4 khong diing ^ ndn phdp tuyg'n theo htfdng qua gidi hanW Dinh nghia 1.1 That vay, ta xel vidu sau LrcaNGDAI HOC DONG THAP Tgp chl Khoa hoc so 13 (6-2015) Vi du ^ Cho a va e nhtf Vi du • KM dd vdi x = (0,0) thi theo ket qua du 2.2 ta thsTy rang Dinh li 2.4 khdng thda n cho ndn phdp tuyen theo htfdng qua gidi nidm ndn phdp tuyd'n theo htfdng Sau dd chflng tdi sfl dung dtfdi vi phdn theo htfdng de dac tnmg dieu kidn cin cho nghidm ctfc tieu theo htfdng cfla mdt ham sd / Cho f:X->lx la mdt hdm nufa Udn tuc dtfdi Khi dd ta cd cac ki hidu sau domf := {x ^ I / ( x ) < +00} va I X, U la mot ldn can cua diim x^ e Q ^P'f '•= {(.X.'') EXX^\X^ domf, r > / ( x ) } ^ n r-i (XQ + Cg ) o C/ Id tap ldi Khi dd vdi mgi Dinh nghia 2.9 Cho n,Q la cac tdp iO tacd Dinh nghla 1.7 Dinh If 2.6 Gid sU H va Q Id cde tap ,g(x„,n) = { x - G X ! < x ' x - X o ) < e | | x - x , | | ddng cfla X va X(, e Q Dudi vi phdn qua gidi •enn(Xo+Cg)oC/} ftgn tuang iing rdi Q cua / dtfdc xdc dinh bdi Chdhg minh Chfl y rang bao ham thfl'c )" b i l u thfl'c tren dat dtfdc ttf dinh V K ) •= {^' ^ ^ I (^'.-1) e A'e((x„,/(x,)).e/«/)} Nd'u Q-[u] vdi « ^ thi ta ki hieu iia vdi hS't ki tap €l,Q vk bat ki ISn cdn U ^u/(^o) *hay 5, / ( X Q ) vd gpi Id dudi vi phdn Xj, Chflng ta chi can chd'ng minh chieu qua gidi fign theo hudng u cfla / tai x^ Jdc lai nr-i(Xo+Cg)}nC/ la tdp l6i Djnh ll 2.10 Niu x^, Id cue tiiu dia phuang y gid, llfy bd't ki x* e 7^^g(x,n) vd co dinh tuang 'm x e f i i n ( X o + C g ) n f / 5„/(x,) Khi dd ta cd : = X o + Q r ( x - X o ) e n n ( x o + C g ) r i t / vdi mpi : a < l tinh l6i cfla tap £3r>(Xo4-Cg)ni7 n ntfa, day x^ -> x^, a -> 0* Lay bat ki >0, ta cd {x',x^-XQ) Dinh H dtfdc chflng minh D Sau ddy, chflng toi gidi thidu khai nidm 3i vi phdn theo htfdng thdng qua khdi ni6m a phap tuyd'n theo htfdng va dp dung dtfdi vi in theo htfdng d^ tim dieu kidn c i n cho lidm t^i tfu cua bdi todn (P) Trtfdc h^t, ing toi se gidi thidu khai nidm ctfc tiiu ttg dttg vdi mdt tap nhtf sau Dinh nghia 2.8 Cho / Id mgt ham nuTa ling vdi QcX\{0} eUa f Chtfng minh Ldy x„:=x^ thi '^'^'^ >x^, X* := — ^ ^ ^ va la'y b^t ki £„ -> 0,^„ -> 0^ thi vdi m6i ^ > chpn r^ = r^ > bat ki ta cd {K^x-x^)-ir- p{x„)) = -ir - ^(Xo)) (:^)) cho / ( x ) > / ( x j VxeZ)g(x„^,r), igdd£>e(Xo,^,/-):=(j:o+Cg^)n5(Xo,r) Tid'p theo, chung tdi se gidi thidu khdi m dtfdi vi phan theo htfdng thdng qua khdi tbi Xf^ Id cue tiiu dia phuang theo mgi Dinh Ii 2.12 Niu x^ Id cue tiiu dia phuang cua f thl vdi mgi u e X \ { } tacd e dj{x^) Chtfhg minh Suy ttf Dinh li 2.10 vd Bo de2.1L n 67 TuaONG SAI HOC DONG THAT Tap chi Khoa hpc 50 13 (6-;ow Tai li^u tham khao [1] N L H Anh and P Q Khanh (2013), "Higher-order optimality conditions in set-valutj optimization using radial sets and radial derivaUves", J Glob Optim., (56), p 519-536 [2] I Gmchev and B S Jvlordukhovich (2011), "On directionally depend™ subdifferentials", C R Acad Bulgare Sci., (64), p 497-508 [3] I Ginchev and B S Mordukhovich (2012), "Directional subdifferentials and optimaliiy conditions", Positivity, (16), p IQH-l'il [4] P Q Khanh and L T Tung (2013), "First and second-order optimality conditions nsiuj approximations for vector equilibrium problems with constraints", / Glob Optim., (55), p 9O1-920 [5] B S Mordukhovich (2006), Variational Analysis and Generalized Differenliation t Springer, Berlin [6] J P Penot (2014), "Directionally limiting subdifferentials and second-order oplimalily conditions", Optim Utt., (8), p 1191-1200 THE DIRECTIONALLY NORIMAL CONE AND OPTEVIAL COlNDinON Summary This paper is devoted to smdy some properties of the directionally Ff chet normal cones ad the directionally limiting normal cones Moreover, we also modify those directionally iimitijij normal cones and estabhsh some properties of the modified normal cones Then we provide some examples to illustrate the differences between these normal cones Finally, we generate li concepts of the directionally sub-differential via the directionally normal cones By using tin dkectionally sub-differentials, we come up with a necessary condition for the directional) optimal solution of an optimization problem Keywords: Directionally normal cone, directionally sub-differential, optimality condition 68 ... thUc hi^n 285 SV cua 03 nginh Quin hi kinh doanh, oin, T i i chinh ngin hing Khi phan tich nhin t^ khim phi EFA d6^i vdi g ch^t lUdng dich vu d i o tao cua Khoa iQTKD, tic gii 6Si sii dung phtfdng...Tap chi Khoa hpc s6 13 (6-2015) O N G DAI HOC DONG THAP iam 2, nam va nam cua Khoa KT&QTKD diTdc chon theo phUdng phip ph^n tang theo ; ket... dancacSVnamnhfi''tdUScquan tam d l c b i f t - Khoa t ? o d i e u k i e n , g i d p d d S V c h o a n c i n h k h d khan ^ - Thdi gian hpc i§p dif^c bff trf thu$n Ii?i cho S V - Khoa ludn flm hi^u iSm tir, nguyen

Ngày đăng: 22/11/2022, 16:37

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w