Nguồn: diemthi.24h.com.vn
Điểm thi 24h
Xem tra điểm thi tốt nghiệp THPT Đềthi đáp án tốt nghiệp THPT
Đề thi tốt nghiệp trung học phổ thông các năm Xem tra đáp án đềthi tốt nghiệp THPT
ĐỀ THITHỬĐẠI HỌC, CAOĐẲNGNĂM2012-2013
Môn thi : TOÁN (ĐỀ 28)
Câu I: (2 điểm) Cho hàm số:
3 2
3 1 9 2
y x m x x m
(1) có đồ thị là (C
m
)
1) Khảo sát và vẽ đồ thị hàm số (1) với m =1.
2) Xác định m để (C
m
) có cực đại, cực tiểu và hai điểm cực đại cực tiểu đối xứng với
nhau qua đường thẳng
1
2
y x
.
Câu II: (2,5 điểm)
1) Giải phương trình:
3
sin 2 cos 3 2 3 os 3 3 os2 8 3cos sinx 3 3 0
x x c x c x x
.
2) Giải bất phương trình :
2
2 1
2
1 1
log 4 5 log
2 7
x x
x
.
3) Tính diện tích hình phẳng giới hạn bởi các đường y=x.sin2x, y=2x, x=
2
.
Câu III: (2 điểm)
1) Cho hình lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a, cạnh bên hợp
với đáy một góc là 45
0
. Gọi P là trung điểm BC, chân đường vuông góc hạ từ A’ xuống
(ABC) là H sao cho
1
2
AP AH
. gọi K là trung điểm AA’,
là mặt phẳng chứa HK và
song song với BC cắt BB’ và CC’ tại M, N. Tính tỉ số thể tích
' ' '
ABCKMN
A B C KMN
V
V
.
2) Giải hệ phương trình sau trong tập số phức:
2
2
2 2 2 2
6
5
6 0
a a
a a
a b ab b a a
Câu IV: (2,5 điểm)
1) Cho m bông hồng trắng và n bông hồng nhung khác nhau. Tính xác suất để lấy được
5 bông hồng trong đó có ít nhất 3 bông hồng nhung? Biết m, n là nghiệm của hệ sau:
2 2 1
3
1
9 19
2 2
720
m
m n m
n
C C A
P
2 ) Cho Elip có phương trình chính tắc
2 2
1
25 9
x y
(E), viết phương trình đường thẳng
song song Oy và cắt (E) tại hai điểm A, B sao cho AB=4.
3) Cho hai đường thẳng d
1
và d
2
lần lượt có phương trình:
Nguồn: diemthi.24h.com.vn
Điểm thi 24h
Xem tra điểm thi tốt nghiệp THPT Đềthi đáp án tốt nghiệp THPT
Đề thi tốt nghiệp trung học phổ thông các năm Xem tra đáp án đềthi tốt nghiệp THPT
1
2
: 2
3
x t
d y t
z t
2
1 2 1
:
2 1 5
x y z
d
Viết phương trình mặt phẳng cách đều hai đường thẳng d
1
và d
2
?
Câu V: Cho a, b, c
0
và
2 2 2
3
a b c
. Tìm giá trị nhỏ nhất của biểu thức
3 3 3
2 2 2
1 1 1
a b c
P
b c a
ĐÁP ÁN ĐỀ SỐ 28
Câu NỘI DUNG Điểm
Câu I.
b) 9)1(63'
2
xmxy
Để hàm số có cực đậi, cực tiểu:
09.3)1(9'
2
m
03)1(
2
m
);31()31;( m
Ta có
14)22(29)1(63
3
1
3
1
22
mxmmxmx
m
xy
Gọi tọa độ điểm cực đại và cực tiểu là (x
1
; y
1
) và (x
2
; y
2
)
14)22(2
1
2
1
mxmmy
14)22(2
2
2
2
mxmmy
Vậy đường thẳng đi qua hai điểm cực đại và cực tiểu là
14)22(2
2
mxmmy
Vì hai điểm cực đại và cực tiểu đối xứng qua đt xy
2
1
ta có điều kiện cần
là
1
2
1
.)22(2
2
mm
122
2
mm
3
1
032
2
m
m
mm
Theo định lí Viet ta có:
3.
)1(2
21
21
xx
mxx
Khi m = 1
ptđt đi qua hai điểm CĐ và CT là:
y = - 2x + 5. Tọa độ trung điểm CĐ và CT là:
0,25đ
0,25đ
0,5đ
Nguồn: diemthi.24h.com.vn
Điểm thi 24h
Xem tra điểm thi tốt nghiệp THPT Đềthi đáp án tốt nghiệp THPT
Đề thi tốt nghiệp trung học phổ thông các năm Xem tra đáp án đềthi tốt nghiệp THPT
Câu II.
1
2
10)(2
2
2
2
4
2
2121
21
xxyy
xx
Tọa độ trung điểm CĐ và CT là (2; 1) thuộc đường thẳng xy
2
1
1
m
thỏa mãn.
Khi m = -3
ptđt đi qua hai điểm CĐ và CT là: y = -2x – 11. Tọa độ trung
điểm CĐ và CT là:
9
2
10)(2
2
2
2
2121
21
xxyy
xx
Tọa độ trung điểm CĐ và CT là (-2; 9) không thuộc đường thẳng
xy
2
1
3
m
không thỏa mãn.
Vậy m = 1 thỏa mãn điều kiện đề bài.
1) Giải phương trình:
)
sincos.3(833cos36cos.32cos.sin6cos.sin2
033)sincos.3(82cos.33cos.32)3(cos2sin
232
3
xxxxxxxx
xxxxxx
0)sincos3(8)sincos3(cos.6)sincos3(cos2
2
xxxxxxxx
)(4cos
1cos
3tan
04cos3cos
0sincos3
0)8cos6cos2)(sincos3(
2
2
loaix
x
x
xx
xx
xxxx
k
kx
kx
,
2
3
2) Giải bất phương trình:
)
7
1
(log)54(log
2
1
2
1
2
2
x
xx (1)
Đk:
7
);1()5;(
07
054
2
x
x
x
xx
)1()5;7(
x
Từ (1)
7
1
log2)54(log
2
2
2
x
xx
0,25đ
0,25đ
0,25đ
0,25đ
Nguồn: diemthi.24h.com.vn
Điểm thi 24h
Xem tra điểm thi tốt nghiệp THPT Đềthi đáp án tốt nghiệp THPT
Đề thi tốt nghiệp trung học phổ thông các năm Xem tra đáp án đềthi tốt nghiệp THPT
5
27
5410
491454
)7(log)54(log
22
2
2
2
2
x
x
xxxx
xxx
Kết hợp điều kiện: Vậy BPT có nghiệm: )
5
27
;7(
x
3) Ta có: x.sin2x = 2x
x.sin2x – 2x = 0
x(sin2x – 2) =0
x = 0
Diện tích hình phẳng là:
2
0
2
0
)22(sin)22sin.(
dxxxdxxxxS
Đặt
x
x
v
dxdu
dxxdv
xu
2
2
2cos
)22(sin
2
0
2
0
2
2
2
2cos
2
2
2cos.
(
dxx
x
x
xx
S
2
0
2
2
4
2sin
24
x
x
S
44424
222
S
(đvdt)
Gọi Q, I, J lần lượt là
trung điểm B’C’, BB’, CC’
ta có:
2
3a
AP
3aAH
Vì
'
'
AHA
vuông cân tại H.
Vậy 3' aHA
HASV
ABCCBABCA
'.
'''
Ta có
4
3
2
3
.
2
1
2
aa
aS
ABC
(đvdt)
0,5đ
0,25đ
0,25đ
0,25đ
0,25đ
0,25đ
0,25đ
0,25đ
45
E
K
J
I
A
B
C
C'
B'
A'
P
H
Q
N
M
Nguồn: diemthi.24h.com.vn
Điểm thi 24h
Xem tra điểm thi tốt nghiệp THPT Đềthi đáp án tốt nghiệp THPT
Đề thi tốt nghiệp trung học phổ thông các năm Xem tra đáp án đềthi tốt nghiệp THPT
Câu III.
4
3
4
3
.3
32
'''
aa
aV
CBABCA
(đvtt) (1)
Vì
'
'
AHA
vuông cân
CCBBHKAAHK '''
G ọi E = MN
KH
BM = PE = CN (2)
mà AA’ =
22
' AHHA
= 633
22
aaa
4
6
2
6 a
CNPEBM
a
AK
Ta có thể tích K.MNJI là:
1
.
3
1 1 6
'
2 4 4
MNJI
V S KE
a
KE KH AA
2
6 6
. . ( )
4 4
MNJI
a a
S MN MI a dvdt
2 3
1 6 6
( )
3 4 4 8
KMNJI
a a a
V dvtt
3 3
2 3
' ' '
3
1
8 8
3
2
8 8
ABCKMN
A B C KMN
a a
V
a a
V
2) Giải hệ phương trình sau trong tập số phức:
06)()(
5
6
222
2
2
aabbaa
aa
aa
ĐK: 0
2
aa
Từ (1) 06)(5)(
222
aaaa
6
1
2
2
aa
aa
Khi 1
2
aa thay vào (2)
2
.231
2
.231
06
06
2
2
i
b
i
b
bb
bb
0,25đ
0,25đ
0,25đ
0,25đ
0,2 5đ
0,25đ
Nguồn: diemthi.24h.com.vn
Điểm thi 24h
Xem tra điểm thi tốt nghiệp THPT Đềthi đáp án tốt nghiệp THPT
Đề thi tốt nghiệp trung học phổ thông các năm Xem tra đáp án đềthi tốt nghiệp THPT
2
31
2
31
01
2
i
a
i
a
aa
Khi 6
2
aa
2
3
a
a
Thay vào (2)
2
51
2
51
01
0666
2
2
b
b
bb
bb
Vậy hệ pt có nghiệm (a, b) là:
2
31
;
2
231
,
2
31
;
2
231 iiii
2
31
;
2
231
,
2
31
;
2
231 iiii
2
51
;2,
2
51
;2,
2
51
;3,
2
51
;3
720
2
19
2
9
1
12
3
2
n
mn
m
m
P
AcC
Từ (2): 761!6720)!1(
nnn (3)
Thay n = 7 vào (1)
)!1(
!
.
2
19
9
!8!2
!10
)!2(!2
!
m
m
m
m
0
99
20
19990
2
19
2
9
45
2
)1(
2
2
m
m
mmm
m
mm
119
m
vì
10
mm
Vậy m = 10, n = 7. Vậy ta có 10 bông hồng trắng và 7 bông hồng nhung, để
lấy được ít nhất 3 bông hồng nhung trong 5 bông hồng ta có các TH sau:
0,25đ
0,25đ
0,25đ
Nguồn: diemthi.24h.com.vn
Điểm thi 24h
Xem tra điểm thi tốt nghiệp THPT Đềthi đáp án tốt nghiệp THPT
Đề thi tốt nghiệp trung học phổ thông các năm Xem tra đáp án đềthi tốt nghiệp THPT
Câu IV:
TH1: 3 bông hồng nhung, 2 bông hồng trắng có:
1575.
2
10
3
7
CC cách
TH2: 4 bông hồng nhung, 1 bông hồng trắng có:
350.
1
10
4
7
CC cách
TH3: 5 bông hồng nhung có:
21
5
7
C cách
có 1575 + 350 + 21 = 1946 cách.
Số cách lấy 4 bông hồng thường
%45,31
6188
1946
6188
5
17
P
C
2) Gọi ptđt // Oy là: x = a (d) tung độ giao điểm (d) và Elip là:
25
25
25
1
9
1
925
222
22
aay
ya
2
2
2
25
5
3
25
25
.9 ay
a
y
Vậy
22
25
5
3
;,25
5
3
; aaBaaA
2
25
5
6
;0 aAB
9
125
9
100
25
9
100
25
3
10
25
425
5
6
||
222
2
aaa
aAB
3
55
a
Vậy phương trình đường thẳng:
3
55
,
3
55
xx
3)đường thẳng d
2
có PTTS là:
'51
'2
'21
tz
ty
tx
vectơ CP của d
1
và d
2
là:
1 2
(1;1; 1), (2;1;5)
d d
u u
VTPT của mp(
) là
1 2
. (6; 7; 1)
d d
n u u
pt mp(
) có dạng 6x – 7y – z + D = 0
0,25đ
0,25đ
0,25đ
0,25đ
Nguồn: diemthi.24h.com.vn
Điểm thi 24h
Xem tra điểm thi tốt nghiệp THPT Đềthi đáp án tốt nghiệp THPT
Đề thi tốt nghiệp trung học phổ thông các năm Xem tra đáp án đềthi tốt nghiệp THPT
Câu V:
Đường thẳng d
1
và d
2
lần lượt đi qua 2đ’ M(2; 2; 3) và N(1; 2; 1)
( ,( )) ( ,( ))
|12 14 3 | | 6 14 1 |
| 5 | | 9 | 7
d M d N
D D
D D D
Vậy PT mp(
) là: 3x – y – 4z +
7 0
Ta có: P + 3 =
2
2
3
2
2
3
2
2
3
111
a
a
c
c
c
b
b
b
a
24
1
1212
24
6
2
2
2
2
3
b
b
a
b
a
P
24
1
1212
2
2
2
2
3
c
c
b
c
b
24
1
1212
2
2
2
2
3
a
a
c
a
c
3
6
3
6
3
6
216
3
216
3
216
3
cba
6
222
3
82
9
)(
222
3
22
3
cbaP
2
3
22
3
22
9
22
3
22
9
6 3
P
Để P
Min
khi a = b = c = 1
0,25đ
0,25đ
0,25đ
0,25đ
0,25đ
. phổ thông các năm Xem tra đáp án đề thi tốt nghiệp THPT
ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2012 -2013
Môn thi : TOÁN (ĐỀ 28)
Câu I: (2 điểm) Cho hàm. Nguồn: diemthi.24h.com.vn
Điểm thi 24h
Xem tra điểm thi tốt nghiệp THPT Đề thi đáp án tốt nghiệp THPT
Đề thi tốt nghiệp trung học phổ thông các năm Xem