1. Trang chủ
  2. » Khoa Học Tự Nhiên

Đề thi thử ĐH môn toán số 179

6 146 1

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 328 KB

Nội dung

WWW.VNMATH.COM THI TH I HC, CAO NG 2012 Mụn thi : TON ( 179 ) Phần dành chung cho tất cả các thí sinh (7 điểm) Câu 1: Cho hàm số : y = 3 2 2 2 3 3( 1) ( 1)x mx m x m + (1) a, Với m = 0 , khảo sát sự biến thiên và vẽ đồ thị hàm số (1) . b, Tìm m để đồ thị hàm số (1) cắt trục Ox tại ba điểm phân biệt có hoành độ dơng. Câu 2: a, Giải phơng trình : sin2x + (1 + 2cos3x)sinx - 2sin 2 (2x+ 4 ) = 0 b, Xác định a để hệ phơng trình sau có nghiệm duy nhất : 2 2 2 2 1 x x y x a x y + = + + + = Câu 3 : Tìm : 3 sin (sin 3 cos ) xdx x x+ Câu 4 : Cho lăng trụ đứng ' ' ' .ABC A B C có thể tích V. Các mặt phẳng ( ' ' ' ),( ),( )ABC AB C A BC cắt nhau . tại O. Tính thể tích khối tứ diện O.ABC theo V. Câu 5 : Cho x,y,z là các số thực dơng . Chứng minh rằng : P = 3 3 3 3 3 3 3 3 3 2 2 2 4( ) 4( ) 4( ) 2( ) x y z x y y z z x y z x + + + + + + + + 12 Phần riêng (3 điểm): Thí sinh chỉ làm một trong hai phần (phần A hoặc B ) A. Theo chơng trình chuẩn Câu 6a : a, Cho đờng tròn (C) có phơng trình : 2 2 4 4 4 0x y x y+ + = và đờng thẳng (d) có phơng trình : x + y 2 = 0 Chứng minh rằng (d) luôn cắt (C) tại hai điểm phân biệt A,B . Tìm toạ độ điểm C trên đờng tròn . . . (C) sao cho diện tích tam giác ABC lớn nhất. b, Trong không gian với hệ toạ độ Oxyz cho điểm A(1;2;3)và hai đờng thẳng có phơng trình : 1 1 2 ( ): 2 2 1 x y z d + = = ' 2 ' 4 ( ) : 2 3 x t d y z t = = = Viết phơng trình đờng thẳng ( )đi qua điểm A và cắt cả hai đờng thẳng(d 1 ), (d 2 ). Câu 7a : Tìm số hạng không chứa x trong khai triển : 7 4 3 1 x x + ữ ( với x > 0 ) B . Theo chơng trình nâng cao Câu 6b : a, Viết phơng trình đờng thẳng chứa các cạnh của tam giác ABC biết B(2;-1) , đờng cao và . . đờng phân giác trong qua đỉnh A,C lần lợt là : 3x -4y + 27 =0 và x + 2y 5 = 0 . b, Trong không gian với hệ toạ độ Oxyz cho A(2;4;1) , B(3;5;2) và đờng thẳng ( ) có phơng trình : 2 1 0 2 0 x y z x y z + + = + + = Tìm toạ độ điểm M nằm trên đờng thẳng ( )sao cho : MA + MB nhỏ nhất . Câu 7b : Cho 2 12 2 24 0 1 2 24 (1 ) x x a a x a x a x+ + = + + + . Tính hệ số a 4 . Hết. 1 WWW.VNMATH.COM P N THI TH I HC, CAO NG 2012 Mụn thi : TON ( 179) Phần dành chung cho tất cả các thí sinh (7 điểm) Câu 1: Cho hàm số : y = 3 2 2 2 3 3( 1) ( 1)x mx m x m + (1) a, Với m = 0 , khảo sát sự biến thiên và vẽ đồ thị hàm số (1) . b, Tìm m để đồ thị hàm số (1) cắt trục Ox tại ba điểm phân biệt có hoành độ dơng. Ta cú y= 3x 2 -6mx+3(m 2 -1) y=0 1 1 x m x m = = + th hm s ct Ox ti 3 im phõn bit cú honh dng thỡ ta phi cú: ' 2 2 2 ' 0 . 0 ( 1)( 3)( 2 1) 0 0 1 0 1 0 0 ( 1) 0 (0) 0 y CD CT CD CT m R f f m m m m x m m x m f > < < > > + > > < < V 1 2 1 3 1 3 1 2 3 1 2 1 m m m m m < < < < < < + < < + > Vy giỏ tr m cn tỡm l: ( 3;1 2)m + Câu 2: a, Giải phơng trình : sin2x + (1 + 2cos3x)sinx - 2sin 2 (2x+ 4 ) = 0 <=> Sin2x + (1+2cos3x)sinx 2sin(2x + 4 )=0 sin2x + sinx + sin4x sin2x = 1 cos(4x + 2 ) sinx + sin4x = 1+ sin4x sinx = 1 x = 2 + k2 , k Z b, Xác định a để hệ phơng trình sau có nghiệm duy nhất : 2 2 2 2 1 x x y x a x y + = + + + = Nhn xột: Nu (x;y) l nghim thỡ (-x;y) cng l nghim ca hSuy ra, h cú nghim duy nht khi v ch khi x =0 + Vi x = 0 ta cú a =0 hoc a = 2-Vi a = 0, h tr thnh: 2 2 2 2 2 2 2 2 (1) (I) 1 1 (2) x x x y x x x y x y x y + = + + = + = + = T (2) 2 2 2 2 1 1 2 1 1 1 x y x x x y x x y + ( I ) cú nghim 2 2 2 1 0 2 1 1 1 x x y x x x y y + = = + = = = -Vi a=2, ta cú h: 2 2 2 2 2 1 x x y x x y + = + + + = D thy h cú 2 nghim l: (0;-1) v (1;0) khụng TM Vy a = 0 TM 2 WWW.VNMATH.COM Câu 3 : Tìm : 3 sin (sin 3 cos ) xdx x x+ Ta cú 3 3 sin[(x- ) ] sinx 6 6 (sinx+ 3 osx) 8 os ( ) 6 c c x + = 3 1 sin( ) os(x- ) 2 6 2 6 8 os(x- ) 6 x c c + = 3 2 sin( ) 3 1 1 6 16 16 os ( ) os ( ) 6 6 x c x c x = + 3 2 sinxdx 3 1 tan( ) 16 6 (sinx+ 3 osx) 32 os ( ) 6 x c c c x = + + Câu 4 : Cho lăng trụ đứng ' ' ' .ABC A B C có thể tích V. Các mặt phẳng ( ' ' ' ),( ),( )ABC AB C A BC cắt nhau . tại O. Tính thể tích khối tứ diện O.ABC theo V. Gi I = AC AC, J = AB AB (BA'C) (ABC') = BI (BA'C) (AB'C) = CJ Goi O = BI CJ O l im cn tỡm Ta cú O l trng tõm tam giỏc BAC Gi H l hỡnh chiu ca O lờn (ABC) Do V ABC l hỡnh chiu vuụng gúc ca V BAC trờn (ABC) nờn H l trng tõm V ABC Gi M l trung im BC. Ta cú: 1 ' 3 OH HM A B AM = = 1 1 1 . ' . 3 9 9 OABC ABC ABC V OH S A B S V = = = V V Câu 5 : Cho x,y,z là các số thực dơng . Chứng minh rằng : P = 3 3 3 3 3 3 3 3 3 2 2 2 4( ) 4( ) 4( ) 2( ) x y z x y y z z x y z x + + + + + + + + 12 Ta cú: 4(x 3 +y 3 ) (x+y) 3 , vi x,y>0 Tht vy: 4(x 3 +y 3 ) (x+y) 3 4(x 2 -xy+y 2 ) (x+y) 2 (vỡ x+y>0) 3x 2 +3y 2 -6xy 0 (x-y) 2 0 luụn ỳng Tng t: 4(x 3 +z 3 ) (x+z) 3 4(y 3 +z 3 ) (y+z) 3 3 3 3 3 3 3 3 3 3 3 4( ) 4( ) 4( ) 2( ) 6x y x z y z x y z xyz + + + + + + + Mt khỏc: 3 2 2 2 1 2( ) 6 x y z y z x xyz + + 3 3 1 6( ) 12P xyz xyz + Du = xy ra 2 2 2 1 1 x y z x y z x y z y z x xyz xyz = = = = = = = = Vy P 12, du = xy ra x = y = z =1 3 J I O H M B' A' C' C B A WWW.VNMATH.COM Phần riêng (3 điểm): Thí sinh chỉ làm một trong hai phần (phần A hoặc B ) A. Theo chơng trình chuẩn Câu 6a : a, Cho đờng tròn (C) có phơng trình : 2 2 4 4 4 0x y x y+ + = và đờng thẳng (d) có phơng trình : x + y 2 = 0 Chứng minh rằng (d) luôn cắt (C) tại hai điểm phân biệt A,B . Tìm toạ độ điểm C trên đờng tròn (C) sao cho diện tích tam giác ABC lớn nhất. (C) cú tõm I(2;2), bỏn kớnh R=2 Ta giao im ca (C) v (d) l nghim ca h: 2 2 0 2 2 0 4 4 4 0 2 0 x y x y x y x y x y = = + = + + = = = Hay A(2;0), B(0;2) Hay (d) luụn ct (C ) ti hai im phõn bit A,B Ta cú 1 . 2 ABC S CH AB= V (H l hỡnh chiu ca C trờn AB) ax CH max ABC S m V D dng thy CH max ( ) ( ) 2 C C C x = > V Hay V : y = x vi : (2;2) d I V V V (2 2;2 2)C + + Vy (2 2;2 2)C + + thỡ ax ABC S m V b, Trong không gian với hệ toạ độ Oxyz cho điểm A(1;2;3)và hai đờng thẳng có phơng trình : 1 1 2 ( ) : 2 2 1 x y z d + = = ' 2 ' 4 ( ) : 2 3 x t d y z t = = = Viết phơng trình đờng thẳng ( )đi qua điểm A và cắt cả hai đờng thẳng(d 1 ), (d 2 ). Nhn xột: M (d1) v M (d2) Gi s ( ) ( 1) ( ) ( 2) d I d H = = V V Vỡ I d1 I(2t-1; -1-2t; 2+t) H d2 H(4t; -2; 3t) 1 2 (1 4 ') 23 3 2 (2 2) 10 , 0 1 (3 3 ') 23 18 3 ( ; ; ) 5 5 10 cbt t k t TM kHM y t k t k R k t k t T = = + = + = = uuur uuuur Vy phng trỡnh ng thng i qua 2 im I v H l: 1 56 2 16 3 33 x t y t z t = + = = + hoc l: 5 8 17 0 12 9 16 18 0 x y z x y z + + + + = Câu 7a : Tìm số hạng không chứa x trong khai triển : 7 4 3 1 x x + ữ ( với x > 0 ) 4 H 4 A B I y x M 2 2 O C WWW.VNMATH.COM Ta cú: 1 1 7 7 7 4 34 7 3 0 1 ( ) ( ) .( ) k k k k x C x x x = + = s hng th k khụng cha x thỡ: 1 1 (7 ) 0 4 4 3 [0;7] k k k k = = Vy s hng khụng cha x trong khai trin l: 4 7 1 35 C = B . Theo chơng trình nâng cao Câu 6b : a, Viết phơng trình đờng thẳng chứa các cạnh của tam giác ABC biết B(2;-1) , đờng cao và đờng phân giác trong qua đỉnh A,C lần lợt là : 3x -4y + 27 =0 và x + 2y 5 = 0 . Phngtrỡnh ng thng cha cnh BC: 1 ( ) qua B ( ) : 4 3 5 0 BC d BC BC x y + = Ta im C l nghim ca h: 4 3 5 0 ( 1;3) 2 5 0 x y C x y + = + = Gi K AC , K BC , K 2 theo th t l h s gúc ca cỏc ng thng AC, BC, d 2 Ta cú: 2 2 2 2 3 1 1 4 2 2 1 3 1 1 . 1 . 1 . 1 2 4 2 0 1 (loai) 3 AC BC d d AC BC d d AC AC AC AC K K K K K K K K K K K K + = = + + + = = Vy pt ng thng AC i qua C v cú h ssú gúc k=0 l: y = 3 + Ta im A l nghim ca h: 3 4 27 0 ( 5;3) 3 0 x y A y + = = Pt cnh AB l: 5 3 4 7 1 0 2 5 1 3 x y x y + = + = + Vy AB: 4x+7y-1=0 AC: y=3 BC: 4x+3y-5=0 b, Trong không gian với hệ toạ độ Oxyz cho A(2;4;1) , B(3;5;2) và đờng thẳng ( ) có phơng trình : 2 1 0 2 0 x y z x y z + + = + + = Tìm toạ độ điểm M nằm trên đờng thẳng ( )sao cho : MA + MB nhỏ nhất . + Xột v trớ tng i gia AB v V , ta cú: V ct AB ti K(1;3;0) Ta cú 2KB KA= uuur uuur A, B nm v cựng phớa i vi V Gi A l im i xng vi A qua V v H l hỡnh chiu ca A trờn V . H( 1;t;-3+t) (vỡ PTTS ca V : 1 3 x y t z t = = = + )Ta cú . 0 1.0 ( 4).1 ( 4 ).1 0 4 (1;4;1) '(0;4;1) AH u t t t H A = + + + = = uuuurr Gi M l giao im ca AB v d 13 4 (1; ; ) 3 3 M Ly im N bt k trờn V Ta cú MA+MB=MB+MA=AB NA+NBVy 13 4 (1; ; ) 3 3 M 5 WWW.VNMATH.COM C©u 7b : Cho 2 12 2 24 0 1 2 24 (1 ) x x a a x a x a x+ + = + + + . TÝnh hÖ sè a 4 . Ta có: (1+x+x 2 ) 12 = [(1+x)+x 2 ] 12 = = 0 12 1 11 2 12 2 12 24 12 12 12 12 (1 ) (1 ) . (1 ) .( ) k k k C x C x x C x x C x − + + + + + + + + = 0 0 12 1 11 8 4 1 2 0 11 9 2 12 12 12 12 12 11 11 2 4 0 10 10 12 10 10 [C ]+C x [C ] +C [C ]+ C x C x C x x C x x x C + + + + + + + + + ⇒ Chỉ có 3 số hạng đầu chứa x 4 0 8 1 9 2 10 4 12 12 12 11 12 10 . . . 1221a C C C C C C⇒ = + + = 6 . WWW.VNMATH.COM THI TH I HC, CAO NG 2012 Mụn thi : TON ( 179 ) Phần dành chung cho tất cả các thí sinh (7 điểm) Câu 1: Cho hàm số : y = 3 2 2 2 3. a x a x a x+ + = + + + . Tính hệ số a 4 . Hết. 1 WWW.VNMATH.COM P N THI TH I HC, CAO NG 2012 Mụn thi : TON ( 179) Phần dành chung cho tất cả các

Ngày đăng: 18/03/2014, 14:48

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w