1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Tài liệu 50 đề thi học sinh giỏi cấp tỉnh môn Toán lớp 9 có đáp án

107 11 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 107
Dung lượng 2,37 MB

Nội dung

tai lieu, luan van1 of 98 SỞ GIÁO DỤC VÀ ĐÀO TẠO BÌNH ĐỊNH KỲ THI CHỌN HỌC SINH GIỎI CẤP TỈNH LỚP THCS KHOÁ NGÀY 18 – – 2017 Đề thức Mơn thi: TỐN Thời gian: 150 phút (không kể thời gian phát đề) Ngày thi: 18/3/2017 Bài (6,0 điểm) Cho biểu thức: P = 2m  16m   m2 m 3 m2  m 1 2 m3 a) Rút gọn P b) Tìm giá trị tự nhiên m để P số tự nhiên Cho biểu thức: P = (a + b)(b + c)(c + a) – abc với a, b, c số nguyên Chứng minh a + b + c chia hết cho P chia hết cho Bài (5,0 điểm) a) Chứng minh rằng: với số thực x, y dương, ta ln có: 1   x y x y b) Cho phương trình: x2  3mx   (m tham số) Có hai nghiệm x1 x2 Tìm giá trị nhỏ biểu thức: M =  x1  x2    x12  x22     x2   x1 Bài (2,0 điểm) Cho x, y, z ba số dương Chứng minh rằng: 1 1 1         x  yz y  xz z  xy  xy yz zx  Bài (7,0 điểm) Cho tam giác ABC nội tiếp đường trịn tâm O bán kính R M điểm di động cung nhỏ BC đường trịn a) Chứng minh MB + MC = MA b) Gọi H, I, K chân đường vng góc hạ từ M xuống AB, BC, CA Gọi S, S’ diện tích tam giác ABC, MBC Chứng minh rằng: Khi M di động ta ln có đẳng thức: MH + MI + MK =  S + 2S' 3R Cho tam giác ABC có ba góc nhọn AD, BE, CF đường cao Lấy M đoạn · · Chứng minh MA tia phân giác = BAC FD, lấy N tia DE cho MAN · góc NMF document, khoa luan1 of 98 tai lieu, luan van2 of 98 ĐÁP ÁN Bài (6,0 điểm) 1a) Rút gọn P = m 1 (với m  0, m  1) m 1 1b) P= m 1 = 1+ m 1 Ta có: P  N  m 1 N  m 1 m  ước dương  m  4; 9 (TMĐK) Vậy m = 4; m = giá trị cần tìm 2) a + b + c M4 (a, b, c  Z) Đặt a + b + c = 4k (k  Z)  a + b = 4k – c ; b + c = 4k – a ; a + c = 4k – b Ta có: P = (a + b)(b + c)(c + a) – abc = (4k – c)(4k – a)(4k – b) – abc = 16k  4ak  ack  ac   4k  b   abc = 64 k  16bk  16ak  4abc  16ck  4bck  4ack  abc  abc = 16k  4bk  4ak  abk  4ck  bck  ack   2abc (*) Giả sử a, b, c chia dư  a+ b + c chia dư (1) Mà: a + b + c M4  a + b + c M2 (theo giả thiết) (2) Do (1) (2) mâu thuẫn  Điều giả sử sai  Trong ba số a, b, c có số chia hết cho  2abc M4 (**) Từ (*) (**)  P M4 Bài (5,0 điểm) a) 1 ab 2     a  b   4ab   a  b   (đúng)   ab ab x y x y b) PT có a, c trái dấu nên ln có hai nghiệm phân biệt x1 x2 Ta có: x1  x2   3m x1.x2   2   x12  x22  M =  x1  x2      = = x2   x1 2    x1 x2    x1 x2     2      x1  x2   x1 x2  1    x1  x2  1  2  x1 x2     x1 x2      2 =   m       Dấu “=” xảy m = Vậy GTNN M  m = Bài (2,0 điểm) Áp dụng BĐT Cô si cho số dương x yz, ta có: x + yz  x yz  x yz  document, khoa luan2 of 98 1 1   x  yz x yz x yz tai lieu, luan van3 of 98 Tương tự, ta có: 1 1 1   z  xy z xy y  xz y xz 1 1 1         x  yz y  xz z  xy  x yz y xz z xy  yz  xz  xy 1   Ta có: = (2) xyz x yz y xz z xy Suy ra: (1) Ta có: yz  xz  xy  x + y + z (3) Thật vậy: (*)  yz  xz  xy  x  y  z   x   y   z  x y  x   (BĐT đúng) Dấu “=” xảy x = y = z Từ (2) (3) suy ra: 1 x yz 1   (4)     xyz yz xz xy x yz y xz z xy Từ (1) (4) suy ra: 1 1 1 1        x  yz y  xz z  xy  xy yz zx  Bài (7,0 điểm) 1.a) Cách 1: Trên tia đối tia MC lấy điểm E cho ME = MB Ta có:  BEM tam giác  BE = BM = EM A  BMA =  BEC  MA = EC Do đó: MB + MC = MA Cách 2: O Trên AM lấy điểm E cho ME = MB E Ta có:  BEM tam giác B  BE = BM = EM  MBC =  EBA (c.g.c)  MC= AE M Do đó: MB + MC = MA 1.b) Kẻ AN vng góc với BC N Vì  ABC tam giác nên O trọng tâm tam giác  A, O, N thẳng hàng  AN = A O B C M E A R AN 3  R: R sin · ABN 2S 2S I N Ta có: MH AB  S ABM  MH  ABM = ABM B AB R H S ACM 2S ACM = MK AC  S ACM  MK  M AC R S BCM 2S 2S ' = MI BC  S BCM  MI  BCM = BC R R 2 2S ' 2S ' Do đó: MH + MK + MI = + + S ABMC  S ABM  S ACM  = R R R R 3  S  2S ' 2S ' = +  S  S '  3R R R ABN  AB  Ta có: AN = AB.sin · document, khoa luan3 of 98 C O K C tai lieu, luan van4 of 98 Qua M kẻ đường thẳng song song với BC cắt DE K · · Tứ giác AEDB nội tiếp  CDE  BAC · · Mà: MKD (vì MK // BC)  CDE · · Do đó: MKD  MAN  Tứ giác AMKN nội tiếp · AMN  · AKN ¶ D ¶ (= BAC ¶ D ¶ · Ta có: D ) D  DMK có DA phân giác vừa đường cao nên cân D  DM = DK AMD  · AKD  AMD =  AKD (c.g.c)  · F  AMF  · AMN  · AKN Nên: · AMF  · AKN Ta có: · A N  E H Vậy: MA phân giác góc · NMF K M B D C ĐỀ HỌC SINH GIỎI TỐN SGD BÌNH DƯƠNG NĂM HỌC:2016-2017 Câu 1: (5 điểm) a) Tìm tất ngiệm nguyên phương trình x  y  2017 b) Xác định số điện thoại THCS X thành phố Thủ Dầu Một, biết số dạng 82xxyy với xxyy số phương Câu 2: (4 điểm) Tam giác ABC nội tiếp đường tròn (O; R) , M  (O; R) Chứng minh rằng: MA2  MB2  MC  6R2 Câu 3: (3 điểm) a) Giải phương trình: x2 3 9 x     x2  1    ( x  y )      xy  b) Giải hệ phương trình:  ( x  y ) 1    49  2    x y   Câu 4: (3 điểm) a) Chứng minh với số a, b, c, d ta ln có: (a2  c2 )(b2  d )  (ab  cd )2 a  b2  b) Cho a, b  chứng minh rằng: (4a  3b)(3a  4b) 25 document, khoa luan4 of 98 tai lieu, luan van5 of 98 Câu 5: (3 điểm) Cho tứ giác ABCD Gọi M , N , P, Q trung điểm AB, BC, CA, DA Chứng minh rằng: S ABCD  MP.NQ  ( AB  CD)( AD  BC ) Câu 6: (2,0 điểm) Cho đa giác lồi có 12 cạnh a) Tìm số đường chéo b) Tìm số tam giác có cạnh cạnh đa giác ? LỜI GIẢI ĐỀ HỌC SINH GIỎI TỐN SGD BÌNH DƯƠNG NĂM HỌC 2016-2017 Người giải đề: Triệu Tiến Tuấn Câu 1: (5 điểm) a) Tìm tất ngiệm nguyên phương trình x  y  2017 b) Xác định số điện thoại THCS X thành phố Thủ Dầu Một, biết số dạng 82xxyy với xxyy số phương Lời giải a) Phương trình: x  y  2017 ( x, y  0)  x  20172  y  4034 y Do x, y  Z  y  Z Vậy nghiệm tổng quát phương trình là: x  a2 ; y  (2017  a)2 b) Ta có: xxyy  11x0 y số phương nên x0 y M11  100 x  y M11  99 x  x  y M11  x  y  11  x  y M11   x  y  x  y    x  y  11 Ta có: xxyy  11x0 y  11(99x  x  y)  11(99x  11)  112 (9x  1)  x  số phương x7 y 4 Vậy xxyy  7744; xxyy  0000 Câu 2: (4 điểm) document, khoa luan5 of 98 tai lieu, luan van6 of 98 Tam giác ABC nội tiếp đường tròn (O; R) , M  (O; R) Chứng minh rằng: MA2  MB2  MC  6R2 Lời giải Giả sử M  » AC A Dễ thấy: MA  MC  MB (trên MB lấy I cho MI  MC , ta chứng minh: IB  MA ) M K Đặt: MA  x; MB  y;MC  y  x Ta có: I H AM  BM  CM  x2  y  ( x  y)2  2( x2  y  xy) x (1) C Kẻ AH  BM  MH   AH  x Mà BH  MB  MH  y  BH  MB  MH  y  x x  AB  AH  BH  x  y  x  xy  x  y  xy (2) 4 Từ (1),(2)  AM  BM  CM  AB  2( R 3)  R (dpcm) Câu 3: (3 điểm) a) Giải phương trình: x2 3 9 x   3 9 x  1    ( x  y )      xy  b) Giải hệ phương trình:  ( x  y ) 1    49  2    x y   Lời giải a) Phương trình: x2 3 9 x     x2  3  x  9  x   Điều kiện:  x   3   x  document, khoa luan6 of 98  1 O B tai lieu, luan van7 of 98 x2  3  1   x2     3   x   1 3   x   3   x   3   x    11  3   x     x   x  2   x2   x2 3    x2  x2      x2  2 2 x 2 11 (tmdk )    ( x  y )      xy  b) Hệ phương trình:  dk : x, y    ( x  y )   49  2    x y   1  1  x  y 5 x  y      x y x y     2  x  y    49  x     y    53      x2 y x  y   x y Đặt x   a; y   b ta được: a  b  a   b b  7; a  2    2 a  b  53 2b  10b  28  b  2; a    x   2  x  1 a  2  x     73 b  y   y   y     73  x  x  a  x       b  2  y   2  y  1  y  Câu 4: (3 điểm) a) Chứng minh với số a, b, c, d ta ln có: (a2  c2 )(b2  d )  (ab  cd )2 a  b2  b) Cho a, b  chứng minh rằng: (4a  3b)(3a  4b) 25 Lời giải a) Ta có: (a  c )(b  d )  (ab  cd )  a 2b  a d  c 2b  c d  a 2b  c d  2abcd  a d  c 2b  2abcd  document, khoa luan7 of 98 1 tai lieu, luan van8 of 98   ad  cb   ln b) Ta có: a  b2   25a  25b  (4a  3b)(3a  4b) (4a  3b)(3a  4b) 25  13(a  b )  25ab  13(a  b)  ab  a  b2  Dấu “=” không xảy ra, vậy: (4a  3b)(3a  4b) 25 Câu 5: (3 điểm) Cho tứ giác ABCD Gọi M , N , P, Q trung điểm AB, BC, CA, DA Chứng minh rằng: S ABCD  MP.NQ  ( AB  CD)( AD  BC ) Lời giải Ta có: MP.NQ  2SMNPQ  S ABCD A Gọi R trung điểm AC , ta có : NR  1 AB; QR  CD 2 M Suy ra: NQ  NR  QR  ( AB  CD) Tương tự: PM  ( AD  BC )  MP NQ  ( AB  CD)( AD  BC )  S ABCD  MP.NQ  ( AB  CD)( AD  BC ) Q R B N D P C Câu 6: (2 điểm) Cho đa giác lồi có 12 cạnh a) Tìm số đường chéo b) Tìm số tam giác có cạnh cạnh đa giác ? Lời giải a) Số đường chéo đa giác là: 12 12  3  54 b) Nhận thấy với cạnh tam giác, ta lập 10 tam giác mà tam giác thỏa mãn đề mà đa giác ban đầu có 12 cạnh nên số tam giác thỏa mãn đề 10.12  120 Tuy nhiên tính theo cách tam giác mà có cạnh cạnh kề đa giác cho tính lần Ta có số tam giác tính lần 12 tam giác nên số tam giác thỏa mãn đề thực chất là: 120 12  108 tam giác document, khoa luan8 of 98 tai lieu, luan van9 of 98 SỞ GIÁO DỤC VÀ ĐÀO TẠO QUẢNG NGÃI ĐỀ CHÍNH THỨC ĐỀ THI CHỌN HỌC SINH GIỎI CẤP TỈNH NĂM HỌC 2016 -2017 MÔN TOÁN LỚP Thi ngày 08 tháng 12 năm 2016 (Thời gian làm 120 phút, không kể thời gian giao đề) - (Đề thi gồm 01 trang) Bài (4,0 điểm) 1) Rút gọn biểu thức: A = 2) Cho A  3  3  3  3 x  x x  x  x  x 1 x  x 1 2 a) Nêu điều kiện xác định rút gọn biểu thức A b) Đặt B = A + x – Tìm giá trị nhỏ biểu thức B Bài (4,0 điểm) Giải phương trình 1) Giải phương trình : x  x 1  x  x 1  x3 2) Giải phương trình: x2  5x  12  x2  3x   x  Bài (3,0 điểm) 1) Chứng minh với k số nguyên 2016k + lập phương số nguyên 2) Tìm nghiệm nguyên phương trình x2  25  y( y  6) Bài (7,0 điểm) Cho nửa đường trịn tâm O đường kính AB Gọi C điểm nằm nửa đường tròn (O) (C khác A, C khác B) Gọi H hình chiếu vng góc C AB, D điểm đối xứng với A qua C, I trung điểm CH, J trung điểm DH · = CBH · a) Chứng minh CIJ b) Chứng minh D CJH đồng dạng với D HIB c) Gọi E giao điểm HD BI Chứng minh HE.HD = HC2 d) Xác định vị trí điểm C nửa đường tròn (O) để AH + CH đạt giá trị lớn Bài (2,0 điểm) Cho a, b, c  Chứng minh a b c    bc ca ab -HẾT -Họ tên thí sinh:…………… …… …… Họ, tên chữ ký GT1:…………………… Số báo danh:……………….…… ……… Họ, tên chữ ký GT2:…………………… GD-ĐT Quảng Ngãi Bài Câu document, khoa luan9 of 98 HƯỚNG DẪN CHẤM THI KỲ THI HỌC SINH GIỎI NĂM HỌC 2016 - 2017 Mơn thi : Tốn Nội dung Điểm tai lieu, luan van10 of 98 3 Rút gọn biểu thức: A = Câu (1,75đ) 3 A= A=  3 2(  3)  (  1) 2  3 3   3  2(3  5)  (  1) = 3   3 2(  3) 2 62   2(3  5) 0,75 2 62 2(  3) 2(3  5)  3 3 0,5 0,5 A= 2 x2  x x2  x  x  x 1 x  x 1 a) ĐKXĐ: x  A  Bài (4 đ)    0,25 0,5  x x3 1 x x3 1 x2  x x2  x A    x  x 1 x  x 1 x  x 1 x  x 1 Câu (2,25)  x  x     x   x 1 x  x 1 x 1 x  x 1 x  x 1 x  x 1  x 1  x   0,5 x   x  x  x  x  2 x b) B = A + x – 1= 2 x  x   x  x    x  1   2 0,5 Dấu “=” xảy  x 1   x  ( TM ĐKXĐ) Vậy GTNN biểu thức B=-2 x=1 0,25 0,25 1) Giải phương trình : x  x 1  x  x 1  x3 ĐKXĐ : x  0,25 x  x 1  x  x 1  x3  x 1  x 1   x 1  x 1   2 x3  x 1   x 1 1  x3 (*)  x 1   x 1 1  Nếu x  phương trình (*) x3 x3  x 1   x 1 1   x 1   x 1  x  2  16( x  1)  x2  x   x2  10 x  25   ( x  5)2   x  (TM)  Bài (4 đ) Câu (2đ) x3    Nếu  x  phương trình (*)  x 1    x 1  Câu (2đ) x3 x3 2   x   x  ( TM) 2 0,5 0,25 0,25 0,25 0,25 Vậy phương trình có nghiệm x=1 x=5 2) Giải phương trình: x2  5x  12  x2  3x   x  0,25 Đặt u  x2  5x  12, v  x2  3x  ( u  0, v  0) 0,25  u  x2  5x  12, v  x  3x   u  v  x  10  2( x  5) 0,25 document, khoa luan10 of 98 tai lieu, luan van93 of 98 · 1800  COD · · d) · ( COD cân O) AHC  900  MHC  900  ODC  900  1 · ¼  sdCAD ¼ = 1800  COD  3600  sdCBCB 2 · = CBD (3) · · (4) (hai góc nội tiếp chắn cung BC) CAH  CDB   0,25 Từ (3) (4)  AHC : DBC( g.g ) 0,25 HA BD (5)   HC BC MBC : MDB( g.g ) (chứng minh trên) MD MB BD    MB MC BC MD MB MD  BD      MB MC MC  BC  MD HA2  Từ (5) (6)  MB HC 0,25 (6) 0,25 Ta có 2013a + bc=(a + b + c)a + bc =a2 + ab + ac + bc = a2 +bc + a(b + c) Theo BĐT Cô-Si cho hai số dương ta có a2 + bc  2a bc Từ a2 + bc + a(b + c)  2a bc +a(b + c) = a(b + c + bc ) = a( b  c )2 Vậy a  a  2013a  bc Câu (1,0 đ) a a a  b c   a  a a b c   a (1) a b c 0,25 0,25 Chứng minh tương tự b b c c (2) (3)   b  2013b  ca a b c c  2013c  ba a b c Cộng vế (1); (2); (3) ta 0,25 a b c a b c + +  1 a + 2013a + bc b + 2013b + ca c + 2013c + ab a b c a  bc  b  ca Dờu “=” xảy    a  b  c  671 c  ab  a  b  c  2013  ** HƯỚNG DẪN GIẢI CÂU 3,5 MƠN TỐN CHUN HÀ NAM Câu 3: Từ giả thiết ta có n 1 n2 A  4.111   1)  4(10  10 2n n 1 n2 B  2.888  16.111 1  16(10  10   1) n Từ suy D=A+2B+4= 4(10 n 1 document, khoa luan93 of 98 n n2  10   1)  16(10n1  10n2   1) +4 0,25 tai lieu, luan van94 of 98 9D = 4(10 1)(102n1  102n2   1)  16(10 1)(10n1  10n2   1)  36 4(102 n  1)  16(10n  1)  36 9D=  4(102 n  4.10n  4)   10n      Suy đpcm a a  a  2013a  bc a  (a  b  c )a  bc Câu 5: Với gt cho ta có:   a(a  (a  b)(a  c)) a  2 a  (a  b)(a  c) a  a  ab  ac  bc a(2 (a  b)(a  c)  2a) a(a  b  a  c  2a ) ab  ac   2(ab  ac  bc) 2(ab  ac  bc) 2(ab  ac  bc) (theo BĐT cosi ab  a+b dấu = xảy a=b Từ suy VT  ab  ac bc  ba cb  ac =1 (ĐPCM)   ab  ac  bc ab  ac  bc ab  ac  bc Dấu đẳng thức xảy a=b=c= 2013:3=671 SỞ GD&ĐT NGHỆ AN Đề thức KÌ THI CHỌN HỌC SINH GIỎI TỈNH LỚP NĂM HỌC 2009 – 2010 Mơn thi: TỐN LỚP - BẢNG A Thời gian làm bài: 150 phút Câu (4,5 điểm): a) Cho hàm số f (x)  (x  12x  31)2010 Tính f (a) a  16   16  b) Tìm nghiệm nguyên phương trình: 5(x  xy  y2 )  7(x  2y) Câu (4,5 điểm): 2 a) Giải phương trình: x  x  x  x  x 1 1 x  y  z   b) Giải hệ phương trình:    4  xy z Câu (3,0 điểm): Cho x; y; z số thực dương thoả mãn: xyz = 1 1   Tìm giá trị lớn biểu thức: A  x  y3  y3  z  z  x  Câu (5,5 điểm): document, khoa luan94 of 98 tai lieu, luan van95 of 98 Cho hai đường tròn (O; R) (O'; R') cắt hai điểm phân biệt A B Từ điểm C thay đổi tia đối tia AB Vẽ tiếp tuyến CD; CE với đường tròn tâm O (D; E tiếp điểm E nằm đường tròn tâm O') Hai đường thẳng AD AE cắt đường tròn tâm O' M N (M N khác với điểm A) Đường thẳng DE cắt MN I Chứng minh rằng: a) MI.BE  BI.AE b) Khi điểm C thay đổi đường thẳng DE ln qua điểm cố định Câu (2,5 điểm): Cho tam giác ABC vuông cân A, trung tuyến AD Điểm M di động đoạn AD Gọi N P hình chiếu điểm M AB AC Vẽ NH  PD H Xác định vị trí điểm M để tam giác AHB có diện tích lớn - - - Hết - - Họ tên thí sinh: Số báo danh: SỞ GD&ĐT NGHỆ AN KÌ THI CHỌN HỌC SINH GIỎI TỈNH LỚP THCS NĂM HỌC 2009 – 2010 HƯỚNG DẪN VÀ BIỂU ĐIỂM CHẤM ĐỀ CHÍNH THỨC (Hướng dẫn biểu điểm chấm gồm 04 trang ) Mơn: TỐN - BẢNG A Câu Nội dung Ý Điểm a  16   16  3  a3  32  3 (16  5)(16  5).( 16   16  ) a)  a  32  3.(4).a (2,0đ)  a3  32 12a  a3  12a  32   a3  12a  31   f (a)  12010  5( x2  xy  y )  7( x  y) (1) 5  7( x  y)M  ( x  y)M 1, (4,5đ) Đặt x  y  5t (2) (t  Z ) (1) trở thành x  xy  y  7t (3) b) Từ (2)  x  5t  y thay vào (3) ta (2,5đ) y 15ty  25t  7t  (*)   84t  75t 0,5 0,5 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 Để (*) có nghiệm     84t  75t  0t  document, khoa luan95 of 98 28 25 0,25 tai lieu, luan van96 of 98 Vì t  Z  t  t  Thay vào (*) Với t   y1   x1  0,25 0,25 0,25 0,25 0,25  y2   x2  1  y3   x3  Với t    ĐK x  x  Với x  thỗ mãn phương trình x  x  1( x  x)  ( x  x  1) Với x  Ta có x3  x  x ( x  1)  ( x  x  1) a)  x3  x  x  x  x (2,5đ)  x2  x 1 Dấu "=" Xẩy   0,25 0,25 0,5 0,5 0,25 0,25  x  x   x  x 1   x   x  Vô lý x  x    0,25 Vậy phương trình cho có nghiệm x  0,25 0,25 1 1  x  y  z  (1)  ĐK x; y; z  (I )     (2)  xy z 1 2 Từ (1)        x y z xy xz yz 2, (4,5đ) 0,25 Thế vào (2) ta được: 0,25 1 1 2   2 2 2   xy z x y z xy xz yz 1 2 b)  x  y  z  xz  yz  (2,0đ) 1  (   2)(   2)  x xz z y yz z 0,25 0,25 0,25 1 1  1         x z  y z 1  x  z    x  y  z 1    y z 0,25 Thay vào hệ (I) ta được: ( x; y; z )  ( ; ;  ) (TM ) 0,25 Ta có (x  y)2  x; y 0,25 0,25 0,25 0,25 0,25 1 2 3, (3,0đ) document, khoa luan96 of 98  x2  xy  y  xy Mà x; y > =>x+y>0 Ta có: x3 + y3 = (x + y)(x2 - xy + y2)  x3 + y3 ≥ (x + y)xy tai lieu, luan van97 of 98  x3 + y3 +1 = x3 + y3 +xyz ≥ (x + y)xy + xyz  x3 + y3 + ≥ xy(x + y + z) > Tương tự: y3 + z3 + ≥ yz(x + y + z) > z3 + x3 + ≥ zx(x + y + z) > 1   A  xy(x  y  z) yz(x  y  z) xz(x  y  z) xyz A  xyz(x  y  z) 1 A  xyz Vậy giá trị lớn A  x = y = z = 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 4, (5,5đ) · · Ta có: BDE (cùng chắn cung BE đường tròn tâm O)  BAE ·  BMN · BAE (cùng chắn cung BN đường tròn tâm O') · ·  BMN  BDE ·  BMN · hay BDI  BDMI tứ giác nội tiếp · · a)  MDI  MBI (cùng chắn cung MI) ·  ABE · (cùng chắn cung AE đường tròn tâm O) (3,0đ) mà MDI · ·  ABE  MBI ·  BAE · mặt khác BMI (chứng minh trên)  MBI ~  ABE (g.g) MI BI    MI.BE = BI.AE AE BE document, khoa luan97 of 98 0,25 0,25 0,25 0,50 0,25 0,25 0,25 0,25 0,25 0,50 Gọi Q giao điểm CO DE  OC  DE Q   OCD vng D có DQ đường cao  OQ.OC = OD2 = R2 (1) Gọi K giao điểm hai đường thẳng OO' DE; H giao điểm AB OO'  OO'  AB H µ H µ 900 ;O µ chung Xét KQO CHO có Q b)  KQO ~ CHO (g.g) (2,5đ) KO OQ    OC.OQ  KO.OH (2) CO OH R2 Từ (1) (2)  KO.OH  R  OK  OH Vì OH cố định R không đổi  OK không đổi  K cố định tai lieu, luan van98 of 98 5, (2,5đ) document, khoa luan98 of 98 0,50 0,50 0,50 0,50 0,50 ABC vuông cân A  AD phân giác góc A AD  BC  D  (O; AB/2) Ta có ANMP hình vng (hình chữ nhật có AM phân giác)  tứ giác ANMP nội tiếp đường trịn đường kính NP ·  900  H thuộc đường trịn đường kính NP mà NHP · ·  AMN  450 (1)  AHN Kẻ Bx  AB cắt đường thẳng PD E  tứ giác BNHE nội tiếp đường trịn đường kính NE Mặt khác BED = CDP (g.c.g)  BE = PC mà PC = BN  BN = BE  BNE vuông cân B · · ·  450 mà NHB  NEB  NEB (cùng chắn cung BN) ·  450 (2)  NHB 0,25 ·  900  H  (O; AB/2) Từ (1) (2) suy AHB gọi H' hình chiếu H AB 0,50 0,50 0,25 0,50 tai lieu, luan van99 of 98 HH'.AB  SAHB lớn  HH' lớn mà HH' ≤ OD = AB/2 (do H; D thuộc đường trịn đường kính AB OD  AB) Dấu "=" xẩy  H  D  M  D  SAHB  0,50 Lưu ý: - Học sinh làm cách khác cho điểm tối đa - Điểm thi tổng điểm khơng làm trịn SỞ GIÁO DỤC VÀ ĐÀO TẠO PHÚ THỌ ĐỀ CHÍNH THỨC Câu (4đ)   KỲ THI CHỌN HỌC SINH GIỎI CẤP TỈNH LỚP THCS NĂM HỌC 2009-2010 Môn Tốn Thời gian làm bài: 150 phút, khơng kể giao đề  a) Chứng minh A  2n  2n  chia hết cho với số tự nhiên n b) Tìm số số nguyên n cho B  n  n  13 số phương Câu (5đ) a) Giải phương trình x2  2x   2x2  4x  b) Giải hệ phương trình x  y2   xy   2  x  y  3xy  11 Câu (3đ) Cho ba số x, y, z thỏa mãn x  y  z  2010  1 1  x  y  z  2010  Tính giá trị biểu thức P   x2007  y2007  y2009  z2009  z2011  x2011  Câu (6đ) Cho đường tròn (O;R) dây cung AB cố định, AB  R Điểm P di động dây AB (P khác A B) Gọi  C;R1  đường tròn qua P tiếp xúc với đường tròn (O;R) A ,  D;R2  đường tròn qua P tiếp xúc với đường tròn (O;R) B hai đường tròn  C;R1   D;R2  cắt điểm thứ hai M a) Trong trường hợp P không trùng với trung điểm dây AB, chứng minh OM//CD điểm C, D, O, M thuộc đường tròn b) Chứng minh P di động dây AB điểm M di động đường trịn cố định đưởng thẳng MP ln qua điểm cố định N c) Tìm vị trí P để tích PM.PN lớn ? diện tích tam giác AMB lớn ? Câu Cho số dương x, y,z thỏa mãn điều kiện xy  yz  zx  670 Chứng minh rằng: x y z    x  yz  2010 y  zx  2010 z  xy  2010 x  y  z document, khoa luan99 of 98 tai lieu, luan van100 of 98 ĐÁP ÁN ĐỀ PHÚ THỌ 2009-2010 Câu a) Theo giả thiết n số tự nhiên nên  1;2 ;2  số tự nhiên liên tiếp n n n     Vì tích số tự nhiên liên tiếp ln chia hết 2n  2n 2n  chia hết cho      Mặt khác 2n ;3  nên 2n  2n  chia hết cho Vậy A chia hết cho với số tự nhiên n b) Ta thấy B số phương  4B số phương 2 Đặt 4B= k  k  ¥  4B  4n  4n  52  k   2n   k   2n   k   51 Vì 2n   k  2n   k nên ta có hệ 2n   k  2n   k  2n   k  51 2n   k  17 (1)  (2)  (3)  (4)  2n   k  51 2n   k  17 2n   k  1 2n   k  3 Giải hệ (1) (2) (3) (4) ta tìm n  12;n  3;n  13;n  Vậy số nguyên cần tìm n 12; 3;4;13 Câu a) Ta có 2x2  4x   2(x  1)2   nên tập xác định phương trình R Phương trình cho tương đương với 2x2  4x   2x2  4x    Đặt y  2x2  4x   phương trình cho trở thành y  y2  4y     (thỏa mãn điều kiện) y  Với y  ta có 2x2  4x    2x2  4x    x  x  1 2x  4x    2x  4x     x  Vậy phương trình cho có nghiệm x  1,x  1,x  Với y  ta có b) hệ cho tương đương với 2 2  x  xy  y2  11(x  xy  y )  11  x  xy  y    (*)  2 2 2 x  3xy  y  11 11(x  xy  y )  x  3xy  y (x  2y)(5x  3y)    Từ hệ (*) ta suy x  xy  y2  x  xy  y2   (I)  (II)  x  2y 5x  3y       x  2y   Giải hệ (I) ta tìm (x;y)  (2; 1);(2;1) Hệ II vơ nghiệm Vậy hệ có nghiệm (x;y)  (2; 1);(2;1) Câu Từ giả thuyết suy x, y, z khác 1 1    x y z xyz 1 1 1       0 x y z xyz xy xy   0 xy z(x  y  z) document, khoa luan100 of 98 tai lieu, luan van101 of 98    x  y   0   xy xz  yz  z   (x  y)(xz  yz  z  xy)   (x  y)  z(z  x)  y(z  x)    x  y  y  z  z  x   x 2007  y 2007 x 2007  y 2007  x  y  x  y     z  y    y  z   y 2009  z 2009   y 2009  z 2009   P   z 2011  x 2011  z 2011  x 2011  x  z   z  x   Câu O M C A D HK B P N document, khoa luan101 of 98 tai lieu, luan van102 of 98 ·  CAP ·  OBP · a) Nối CP, PD ta có ACP, OAB cân C, O nên CPA CP // OD (1) ·  DBP ·  OAB · Tương tự DPB, OAB cân D, O nên DPB nên OD//CP (2) Từ (1) (2) suy ODPC hình bình hành Gọi CD cắt MP H cắt OP K K trung điểm OP Theo tính chất đường trịn cắt ta có CD  MP  H trung điểm MP Vậy HK // OM CD // OM Ta phải xét trường hợp AP < BP AP > BP, đáp án yêu cầu xét trường hợp giả sử AP < BP Vì tứ giác CDOM hình bình hành nên OC = DP, DP=DM=R2 nên tứ giác CDOM hình thang cân điểm C, D, O, M thuộc đường tròn b) Xét tam giác AOB có OA2  OB2  2R2  AB2 nên tam giác OAB vuông cân O Vì điểm C, D, O, M cùn thuộc đường tròn (kể M  O ) nên ·  CMD · COB (1) · · » (C )) Xét MAB MCD có: MAB (cùng sđ MP  MCD » · · (cùng sd MP (D)) MBD  MDC Nên MAB đồng dạng MCD (g.g) · · · · Vì MAB đồng dạng với MCD suy AMB hay AMB  AOB  900  COD Do AB cố định nên điểm M thuộc đường tròn tâm I đường kính AB ·  BDP ·  AOB ·  900 nên Ta có ACP 1· · AMP  ACP  450 (Góc nội tiếp góc tâm (C)) 1· · BMP  BDP  450 (góc nội tiếp góc tâm (D)) · Do MP phân giác AMB · ·  AOB  900 nên M thuộc đường tròn (I) ngoại tiếp tam giác AOB Mà AMB Giả sử MP cắt đường trịn (I) N N trung điểm cung AB không chứa điểm O nên N cố định c) · · · ·  BPN  PBN (đối đỉnh); AMP (góc nơi tiếp chắn cung) nên MAP BNP có MPA MAP đồng dạng BNP (g.g) Do PA PM AB R2  PA  PB  (không đổi)   PM.PN  PA PB      PN PB   R2 Vậy PM.PN lớn PA=PB hay P trung điểm dây AB Vì tam giác AMB vuông M nên 1 AB2 R2 S AMB  AM.BM  AM2  BM   4  Diện tích tam giác AMB lớn  R2 PA=PB hay P trung điểm dây AB Câu Trước tiên ta chứng minh bất đẳng thức : Với a,b,c  ¡ x, y, z  ta có: document, khoa luan102 of 98 a b c2  a  b  c     x y z xyz tai lieu, luan van103 of 98 (*) a b c   x y z Thật vậy, với a,b  ¡ x, y  ta có: Dấu “=” xảy  a b2  a  b    x y xy  (**)   a y  b2 x  x  y   xy  a  b   (bx  ay)2  (luôn ) Dấu “=” xảy  a b  x y Áp dụng bất đẳng thức (**) ta có: a b c2  a  b  c2  a  b  c       x y z xy z xyz a b c Dấu “=” xảy    x y z Áp dụng bất đẳng thức (*) ta có: x y z VT    x  yz  2010 y  zx  2010 z  xy  2010 2 x  y  z x2 y2 z2     3 (1) 2 x(x  yz  2010) y(y  zx  2010) z(z  xy  2010) x  y  z  3xyz  2010(x  y  z) Chú ý: x(x2  yz  2010)  x(x2  xy  zx  1340)  0;y(y2  zx  2010)  z  z  xy  2010   Chứng minh  x3  y3  z3  3xyz   x  y  z  x  y2  z  xy  yz  xz    x  y  z   x  y  z    xy  yz  zx   (2)   Do đó: x3  y3  z3  3xyz  2010(x  y  z)   x  y  z   x  y  z   3(xy  yz  zx)  2010   (x  y  z)3 (3)   Từ (1) (3) ta suy x  y  z VT  x  y  z Dấu “=” xảy  x  y  z   xyz 2010 PHÒNG GD&ĐT THẠCH HÀ ĐỀ THI HỌC SINH GIỎI HUYỆN NĂM HỌC 2018 – 2019 Mơn thi: Tốn (Thời gian làm bài: 150 phút) ĐỀ CHÍNH THỨC Câu (4,5 điểm)  Tính giá trị biểu thức A   15  10  Tìm điều kiện xác định biểu thức sau: document, khoa luan103 of 98   15 tai lieu, luan van104 of 98 M 2018 N x2  2x  2019 x  2x  Câu (3,0 điểm) Cho số a, b,c khác 0, thỏa mãn a + b+ c = Chứng minh đẳng thức: 1 1 1  2    a b c a b c Tính giá trị biểu thức: B =  1 1 1         2 2 2018 20192 Câu (4,5 điểm) Cho đa thức f(x), tìm dư phép chia f(x) cho (x-1)(x+2) Biết f(x) chia cho x - dư f(x) chia cho x + dư Giải phương trình: x - 3x + x + = Tìm nghiệm nguyên phương trình: 5x2 + y2 = 17 – 2xy Câu (3,0 điểm) Cho a, b, c độ dài ba cạnh tam giác Chứng minh rằng: a b c   2 bc ca a b 1 ; ; b) độ dài cạnh tam giác ab bc ca a) Câu (5,0 điểm) Cho tam giác ABC vuông A, đường cao AH, trung tuyến AM, phân giác AI Tính HI, IM; biết AC= 4/3AB diện tích tam giác ABC 24 cm2 Qua điểm O nằm tam giác ABC ta vẽ đường thẳng song song với cạnh tam giác Đường thẳng song song với cạnh AB cắt cạnh AC, BC E D; đường thẳng song song với cạnh BC cắt cạnh AB AC M N; đường thẳng song song với cạnh AC cắt cạnh AB BC F H Biết diện tích tam giác ODH, ONE, OMF a2, b2, c2 a) Tính diện tích S tam giác ABC theo a, b, c b) Chứng minh S  3(a2 + b2 +c2) Hết - Họ tên học sinh:…………………………………………………SBD:………… (Cán coi thi khơng giải thích thêm, học sinh khơng sử dụng máy tính bỏ túi ) SƠ LƯỢC GIẢI Đề thi chọn HSG cấp huyện năm học 2018 – 2019 Mơn: TỐN   10    A   15.1      15. A    .   = - = Ta có A   15 Đáp án 15   15 5 Điều kiện xác định M x2  x    ( x  1)( x   x 1  x 1    x   x   document, khoa luan104 of 98    15   15 10   tai lieu, luan van105 of 98 x    x  1  2 x   Điều kiện xác định N   x  x   (*)  x  2x   x  (**)  x2  x   x2  x      x  1 Từ (*) (**) ta x  điều kiện xác định M 1 1  1 1     Ta có:          a b c a b c  ab bc bc  1 a b  1 2(a  b  c) 1  c     2    2 2     a b c b c abc a b c  abc abc abc  a Vậy 1 1 1  2    a b c a b c Theo câu a) Ta có 1 1 1 1  2       (*) a b c a b c a b ab Áp dụng (*) ta có: 1 1 1 1 1 1           2 1 (2) 1 (2) 1 Tượng tự  1 1     ; 22 32 1 1 (Vì    ) 1 1 1     ;… 32 42 1 1     2 2018 2019 2018 2019 4076360  Suy B  2019  2019 2019 3 x - 3x + x + = Û ( x + 1)( x - x + 6) = Û x + = (1) x2 – 4x + = (2) (1) Û x = - (2) Û ( x - 2)2 + = Do ( x - 2)2 + ¹ " x nên pt vô nghiệm Vậy tập nghiệm phương trình cho S = {- 1} 1 Vì ( x - 1)( x + 2) = x + x - đa thức bậc nên f(x) : ( x  1)( x  2) có đa thức dư dạng ax + b Đặt f ( x)  ( x  1)( x  2).q( x)  ax  b Theo đề f(x) : (x - 1) dư  f (1)   a  b  (1) f(x) : (x + 2) dư  f (2)   2a  b  (2) Từ (1) (2)  a = b = Vậy f(x) : [( x - 1)( x + 2)] dư 2x + 5x2 + y2 = 17 – 2xy  4x2 + (x + y)2 = 17 17 x  17  x   x2 số phương nên x2 = 0; 1; Nếu x2 =  (x + y)2 = 17 (loại) Nếu x2 =  (x + y)2 = 13 (loại) document, khoa luan105 of 98 Nếu x =  x = x = - x =  (2 + y)2 =  y = - y = - x = -2  (-2 + y)2 =  y = y = Vậy phương trình có nghiệm : (x; y) = (2; -3), (2; -1), (-2; 3), (-2; 1) tai lieu, luan van1062 of 98 Vì a, b, c ba cạnh tam giác nên b + c > a  a(b  c)  a  a(b  c)  ab  ac  a  ab  ac a 2a  2a(b  c)  a(a  b  c)   bc abc b 2b c 2c   Tượng tự ta có: ; ca abc ba abc a b c 2a 2b 2c       (dpcm) Suy ra: bc ca ab abc bca abc Ta có a + b > c 1 1 2       b  c c  a b  c  a c  a  b a  b  c (a  b )  ( a  b) a  b Chứng minh tương tự ta có Vậy 1 1 1     ; ca ab bc ab bc ca 1 ; ; độ dài cạnh tam giác (Đpcm) ab bc ca Do AC= ¾ AB (gt) AB.AC = 2S = 48, suy AC = (cm); AB = 8(cm) Áp dụng định lí Pitago tam giác vng ABC ta tính BC = 10 cm, suy AM = (cm) (1) Áp dụng tính chất canh đường cao tam giác vng ABC ta tính BH  AB2  3,6(cm) (2) BC Áp dụng tính chất đường phân giác cua tam giác ta có A B IB AB IB AB IB 30       IB  cm (3) IC AC IB  IC AB  AC 10  Từ (1), (2) (3), ta có I nằm B M; H nằm B I 4,8 Vậy: HI = BI - BH  cm MI = BM - BI  cm document, khoa luan106 of 98 H I M C tai lieu, luan van107 of 98 Ta có tam giác ODH, EON, FMO đồng dạng với tam giác ABC Đặt SABC = d2 S a  DH  a DH   Ta có: ODH    ;   BC  S ABC d d BC A E S EON b2  ON  b HC  HC       ; Tương tự    BC   BC  S ABC d d BC c BD  d BC a  b  c DH  HC  DB  1 d  a  b  c d BC Vậy S  d  (a  b  c)2 F c2 O N M a2 Suy ra: B D 2 2 2 Áp dụng BĐT Cosy, ta có: a  b  2ab; b  c  2bc; a  c  2ac S  (a  b  c)2  a  b2  c  2ab  2bc  2ca S  a2  b2  c2  (a2  b2 )  (b2  c2 )  (c  a )  3(a  b2  c ) Dấu “=” xẩy a = b =c, hay O trọng tâm tam giác ABC Lưu ý: Học sinh làm cách khác cho điểm tối đa; Điểm tồn quy trịn đến 0,5 document, khoa luan107 of 98 b2 H C ... TẠO THANH HOÁ KỲ THI CHỌN HỌC SINH GIỎI TỈNH Năm học 2010- 2011 Đề thức Mơn thi: Tốn Lớp: THCS Thời gian: 150 phút (không kể thời gian giao đề) Ngày thi: 24/03/2011 (Đề thi có 01 trang, gồm... thỏa mãn đề thực chất là: 120 12  108 tam giác document, khoa luan8 of 98 tai lieu, luan van9 of 98 SỞ GIÁO DỤC VÀ ĐÀO TẠO QUẢNG NGÃI ĐỀ CHÍNH THỨC ĐỀ THI CHỌN HỌC SINH GIỎI CẤP TỈNH NĂM HỌC 2016... of 98 2b b  ; abc ac 2c c  abc ba 0,5 tai lieu, luan van 29 of 98 SỞ GIÁO DỤC & ĐÀO TẠO HẢI PHÒNG KỲ THI CHỌN HỌC SINH GIỎI THÀNH PHỐ CẤP THCS NĂM HỌC 2016 - 2017 ĐỀ CHÍNH THỨC ĐỀ THI

Ngày đăng: 01/11/2022, 16:42

w