1. Trang chủ
  2. » Giáo án - Bài giảng

a computer program development for sizing stand alone photovoltaic wind hybrid systems

12 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Nội dung

Available online at www.sciencedirect.com ScienceDirect Energy Procedia 36 (2013) 546 – 557 TerraGreen 13 International Conference 2013 - Advancements in Renewable Energy and Clean Environment A computer program development for sizing stand-alone Photovoltaic-Wind hybrid systems a H Belmilia, M F Almia, B.Bendiba, S Boloumaa,* Group of research: Photovoltaic system, Unit of Development of Solar Equipments (UDES)/EPSTT CDER Route Nationale N°: 11 Bou-Ismaïl LP 365, Tipaza 42415, Algeria, Abstract The exhaustion and all the drawbacks of fossil fuels are the main elements that led to the development and use of new alternativesfor power generation based on renewable energy,amongthem: photovoltaic energy systems, windenergy systems and their combination in a hybrid photovoltaic-wind system In this paper we proposed a sizing approach of stand-alone Photovoltaic-Wind systems which is evaluated by the development of a computer applicationbased essentially on Loss of Power Supply Probability (LPSP) algorithmto provide an optimal technical-economic configuration An example of a PV-Wind plant sizing is presented and discussed © Authors Published by Elsevier Ltd Ltd © 2013 2013The The Authors.Published by Elsevier Selection peer-review underunder responsibility of the TerraGreen Academy Academy Selectionand/or and/or peer-review responsibility of the TerraGreen Keywords: Software, Sizing, Photovoltaic, Wind, LPSP Algorithms, Hybrid System; Introduction In a general context, Hybrid Energy Systems (HES) combine two or more complementary renewable sources like wind turbines and photovoltaic generators and/or d one or more conventional sources like diesel generators [1] Naturally, renewable sources are not constant, so their combination with conventional ones allowsan uninterrupted power generation Most hybrid systems have an energy storage system [2].There are many systems for storage; electrochemical batteries, inertial storage and hydrogen * Corresponding author Tel.: +213-24-41-02-00; fax: +213-24-41-01-33 E mail address:belmilih@yahoo.fr E- 1876-6102 © 2013 The Authors Published by Elsevier Ltd Selection and/or peer-review under responsibility of the TerraGreen Academy doi:10.1016/j.egypro.2013.07.063 H Belmili et al / Energy Procedia 36 (2013) 546 – 557 The latter is limited in storage capacity and has a high cost In general there are three main aspects to consider for a hybrid system [3]: x The hybrid system configuration with respect to the available resources and constraints utilization x The optimization of the available renewable resources exploitation x The optimization of the output power quality There are many configurations of hybrid systems The most popular are: DC-bus configuration and DC/AC mixed bus configuration In what follows we present a brief description of these architectures 1.1 DC bus architecture In this case the power provided by each source is centralized on a DC-bus, figure.1 The matching between the DC bus and the AC loads is possible by using DC-AC inverter, the advantage of this architecture is that the control system is relatively simple [4] Fig.1 DC Bus architecture 1.2 Mixed-bus AC / DC Architecture This architecture is more efficient compared to the DC bus architecture Indeed in this case the wind generator output power can be directly feed the AC load which increases the system performance Where there is a surplus of energy, the batteries will start charging, figure.2 For the converters, it can be a single bi-directional between the two buses DC and AC replaces the other two converters unidirectional [2, 4] Fig.2 DC - AC Bus Architecture 1.3 operating strategy It is an algorithm that manages the flow of energy in the different system components Depending on the load profile and the characteristics of system, as well as the requirements on power quality [2, 3] The operation of a hybrid system depends on the following parameters: 547 548 H Belmili et al / Energy Procedia 36 (2013) 546 – 557 x The load profile, diurnal variations, seasonal variations, peak dips…etc x Renewable resources: the mean, standard deviation, frequencies of events, extreme values, diurnal variations, seasonal variations x The system configuration: number and types of components x Standards of power quality 1.4 Storage Management x The storage strategy in the short-term "Shaving pecker Strategy", allows you to filter out fluctuations in renewable energy and/or load x The long-term strategy "Cycle Charge Strategy" is used to supply the load for a long period of time; it also improves energy balance [4] 1.5 Load management It can be seen as short-term or long-term expenses that are connected or disconnected according to their priority: Fig.3 Load management The studied hybrid system Figure presents the hybrid system This system is based on a photovoltaic and an asynchronous machine wind turbine The storage part is connected to DC-bus through a shopper DC loads are supplied directly from DC-bus by using DC/DC chopper and AC loads are fed using DC/AC inverter The photovoltaic generator is connected to the DC-bus through a DC/DC chopper controlled by an MPPT controller; however the wind generator is connected to both the DC and AC buses We denote the energy produced for a period of a typical day Ep, where Ep = EPV + EW, and on the other side the energy consumption: Ec the flow of energy is shown in the Fig.5 549 H Belmili et al / Energy Procedia 36 (2013) 546 – 557 DC BUS Fig.4.Configuration of the standalone studied PV-Wind hybrid system Fig.5 Energy flow diagram ip ic Assuming the bus voltage is still constant, it can resonate in current such as: Ep 24h.U c (1) Ec 24h.U (2) We can establish the nodes equation: i p ic  ib , where ib is the equivalent battery current If there is an imbalance between production and consumption, this difference will vary the DC-bus voltage for a period of time ΔT, the timewhen the battery is working: either to charge or to discharge, we can write: 'T I p  I c § 'U · (3) Că I p  Ic C 'U © 'T ¹ In this way we can estimate a priori the value of the battery capacity ic The following diagram gives a synopsis of the developed software 550 H Belmili et al / Energy Procedia 36 (2013) 546 – 557 H Belmili et al / Energy Procedia 36 (2013) 546 – 557 Fig.6 synopsis of the developed software Explanation of the developed interface: In this section we have developed a software code for sizing PV-Wind hybrid system which is based on the loss of power supply probability (LPSP) method [5,9] The design of a facility window for LPSP sizing appears with five buttons in order to carry the different tasks in the sizing procedure, figure Fig.7 LPSP based window 551 552 H Belmili et al / Energy Procedia 36 (2013) 546 – 557 When a button is clicked, a new window appears, allowing the user to define the various quantities and constants that characterize his system size These windows are discussed below 3.1 Sites Sittings: Selecting this button will lead us to the next window: In this window the user can choose the location where he will implement his installation: a database provided by NASA gives us the different values necessary for our design: temperature, sunlight, pressure, wind speed etc Once the location is well chosen it is validated by clicking the OK button: the icon that was red turns green to confirm this validation We reduce the window and we move to the second button Fig.8 Sitecharacterizations 3.2 Load characteristics This step is crucial, the user must specify the load profile [6, 12]; this can be done in two ways: x x Daily average load: where the user should provide the load values during 24 hours within a typical day in each month Monthly average load: where the user is prompted to enter the daily average load value of his load For the daily average load whenever the user entered a value, he must increment time by clicking the increment button At the end user must provide the rated values: number of days of autonomy, to be able to operate the system using the storage and the probability of dissatisfaction LPSP in the load [7, 13] The validation is done by a click on the submit button, the icon red becomes green for the confirmation of validation H Belmili et al / Energy Procedia 36 (2013) 546 – 557 Fig.9 Load profile window Fig.10 monthly Average consumption 3.3 Technical parameters When clicking the technical parameters button, a new window appears, which bring together all the parameters characterizing the system, it is unscrewed in four fields: x Adjustment of the range of system production: the user must specify the maximum power, the power and the minimum increment step for each PV system and wind, figure11 Fig.11 Variation interval of production sources Parameters of the photovoltaic generators: to calculate the power of PV generator, the user is prompted for this field: the performance of the panel, NOTC temperature, reference temperature (usually it is equal to 25°C), the temperature coefficient β (generally between 0.004 and 0.006) [8], figure.12 553 554 H Belmili et al / Energy Procedia 36 (2013) 546 – 557 Fig.12 PV Generator parameters x Parameters of wind generators: in this field the user must specify the ranges of variation of the used wind turbines There are three tracks to complete, and every power range of wind turbines must enter their speed characteristics: Release, Nominal, and Maximal (that according to Power (speed) turbines gives by manufacturers) [9] Fig.13 Wind generator parameters 3.4 Technical parameters When clicking the technical parameters button, a new window appears, which bring together all the parameters characterizing the system, it is unscrewed in four fields: Adjustment of the range of system production: the user must specify the maximum power, the power and the minimum increment step for each PV system and wind, figure11 3.5 Storage Settings To define the storage capacity of the overall system, the user must enter the storage capacity in [Ah]of a single battery, the performance of charging and discharging, the depth of discharge and voltage rating [10] (it depends on the continuous bus used in the system), figure 14 At the end make sure to fill the box that defines the performance of the inverter use, typically it is around 90-98% [11], and once the user finishes entering All parameters specified must be validated by a click on the red icon and the green confirms validation 3.4 Economic Parameters The economic parameters are in a direct relationship with the overall cost of the installation, select ing this button will lead us to a new window where the user is prompted for each component: the photovoltaic panel, the wind, batteries, inverter and its initial price, and maintenance price in $/W and its life time [12, 13], figure 15 H Belmili et al / Energy Procedia 36 (2013) 546 – 557 Fig.14 Storage system and inverter parameters Fig.15 Economic parameters window 3.4 System sizing On reaching this stage, the user had finished entering all parameters and constants characterizing the hybrid system, it should be emphasized that, before the design, the user is strongly advised to check the validation of the values recorded after each step, verifying that the red icon before the OK button is set to green each time Clicking this button will lead us to a new summary window across the sizing; it appears as shown in the figure below: The user will find this window in the optimal configuration of the hybrid system design: The optimal power of the wind turbine to be used; optimal power photovoltaic panels; The number of batteries; The number of autonomy days; The overall cost of the facility; LPSP 555 556 H Belmili et al / Energy Procedia 36 (2013) 546 – 557 Fig.16 Screen of simulation results Other configurations that satisfy the condition specified in the value of the IPPL are classified in a table, to fill the calculated results from the user presses the button "Add Results" Graphs are provided by clicking different buttons: 10 "Draw the graph of PV power" 11 "Draw the graph of wind power" 12 "Draw the graph of the number of battery" 13 "Draw the graph of the overall cost" Conclusion : In this work we have implemented the LPSP method for the sizing of a standalone PV-Wind system This method is based in principle on a technical-economic strategy that’s depending on the cost study taking into account the different equipment’s, the load profile and the meteorological characteristics of H Belmili et al / Energy Procedia 36 (2013) 546 – 557 each installation site This method allows to define several configurations results that satisfy the profile load The economical study is then performed to determine the optimal configuration The following step of this work is the design and the realization of the software which can support this analysis study A presentation of this software is established carefully to explain the LPSP sizing technique of PV-Wind hybrid system Our software has become practical, interactive and easy to use This elaborated simulation program allows as to determine the optimum size of battery bank and PV array for an autonomous PVwind hybrid energy system for a given load and a desired loss of power supply probability based on the minimum cost of the system The total cost also depends on investment cost, operation and maintenance costs, depreciation period and energy produced in one year, in addition to external trends such as the cost of batteries (subject to legislation affecting the cost of new materials and the cost of disposal), the potential downward trend of equipment costs with rising volumes etc The competitiveness of a hybrid system also depends on the relative cost of fossil fuels and the demand for renewable energy from the market The competitiveness of a hybrid system also depends on the relative cost of fossil fuels and the demand for renewable energy from the market Reference [1] Gary D Burch, Hybrid Renewable Energy Systems, Hybrid Power Systems Manager Office of Power Technologies, U.S Department of Energy U.S DOE Natural Gas / Renewable Energy Workshops August 21, 2001 Golden, Colorado [2] Mukund R Patel, Wind and Solar Power Systems, CRC Press, Boca Raton London New York Washington, D.C ISBN 08493-1605-7 (1999) [3] Gilbert M Masters, Renewable and Efficient Electric Power Systems, Stanford University, Copyright (2004) by John Wiley & Sons, Inc., Hoboken, New Jersey.Published by John Wiley & Sons, Inc., Hoboken, New Jersey [4] Volker Quaschning, Understanding Renewable Energy Systems, Copyright © Carl HanserVerlag GmbH & Co KG, 2005, ISBN: 1-84407-128-6 paperback [5] W Kellogg et al “Optimal unit sizing for a hybrid wind/photovoltaic generating system” Elsevier Science, pp35-38, (1996) [6] C¸ elik, A.N Techno-economic analysis of autonomous PV–wind hybrid energy systems using diơ erent sizing methods Energy Conversion and Management 44, 1951–1968 (2003) [7] Prasad, A.R Natarajan, E Optimization of integrated photovoltaic–wind power generation systems with battery storage Energy 31, 1943–1954 (2006) [8] Protogeropoulos, C.Brinkworth, B.J Marshall, R.H Sizing and techno-economical optimization for hybrid solar photovoltaic/wind power systems with battery storage International Journal of Energy Research 21, 465–479 (1997) [9] Yang H Zhou, W Lu, L Fang, Z Optimal sizing method for stand-alone hybrid solar–wind system with LPSP technology by using genetic algorithm Solar energy 10.1016/j.solener.2007.08.2005 (2007) [10]S Dehghan, B Kiani, A Kazemi, A Parizad, Optimal Sizing of a Hybrid Wind/PV Plant Considering Reliability Indices, word academy of science, Engineering and Technology 56 2009 [11] A RajendraPrasada, E Natarajanb, Optimization of integrated photovoltaic–wind power generation systems with battery storage, Energy 31 (2006) 1943–1954 [12] A D Bagul , Z M Salamah and B Borowy , sizing of a stand-alone hybrid wind-photovoltaic system using a tree-event probability density approximation, Solar Energy Vol 56, No 4, pp 323-335, 1996 [13] W Kellogg, M.H Nehrir, G Venkataramanan,V Gerez, Optimal unit sizing for a hybrid wind/photovoltaic generating system, Electric Power Systems Research 39 (1996) 35-38 557 ... Kiani, A Kazemi, A Parizad, Optimal Sizing of a Hybrid Wind/ PV Plant Considering Reliability Indices, word academy of science, Engineering and Technology 56 2009 [11] A RajendraPrasada, E Natarajanb,... Optimization of integrated photovoltaic? ? ?wind power generation systems with battery storage, Energy 31 (2006) 1943–1954 [12] A D Bagul , Z M Salamah and B Borowy , sizing of a stand- alone hybrid wind -photovoltaic. .. use This elaborated simulation program allows as to determine the optimum size of battery bank and PV array for an autonomous PVwind hybrid energy system for a given load and a desired loss of

Ngày đăng: 01/11/2022, 08:30

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w