For th(>crirrcrrt we thus m,ike t h c following st;vting poirit r(t)- J l P i l l +I p t ( 13) Tlie constants I and I2 arc imltrmvii ancl nimt kw dctcmiincd froin th(' niodcl of the network We put u(t) and i ( t ) into the differeutial equation (3.1.4) (3.17)