1. Trang chủ
  2. » Ngoại Ngữ

Simulation and Analysis of Stream-Aquifer Systems

119 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-1967 Simulation and Analysis of Stream-Aquifer Systems Morton W Bittinger Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Civil and Environmental Engineering Commons Recommended Citation Bittinger, Morton W., "Simulation and Analysis of Stream-Aquifer Systems" (1967) All Graduate Theses and Dissertations 1630 https://digitalcommons.usu.edu/etd/1630 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU For more information, please contact digitalcommons@usu.edu UTAH STATE UNIVERSITY 1 1 131 9060 1 1 1 00707 1 1 1 19139 1 1 1 1 ~1 SIMULATION AND I I 1·] tam-a fu~ALYSIS OF STREAH-AQUIFER SYSTEMS Prepared for and under the auspices of the Soil and Water Research Division Agricultural Research Service United States Department of Agriculture By Morton w~ Bittinger Fort Collins; Colorado A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Civil Engineering, Utah State University, Logan, Utah 1967 ACKNOWLEDGMENTS The writer wishes to acknowledge and thank many organizations and individuals for their help in the planning, financing, and completion of this treatise The Agricultural Research Service, USDA, provided financial support for the study Valuable suggestions and advice were provided by Agricultural Research Service personnel, including Chester E Evans, Howard R Haise, Gordon Kruse, Jan van Schilfgaarde, and T.W Ediminster Colorado State University provided facilities and research support services during the course of this study and the preparation and printing of this treatise Individuals within the typing pool, drafting section and printing section of the Foothills Engineering Research Center have all performed excellent, top-level work The writer is grate- ful to them all, but specifically wishes to mention the fine typing of the final draft by Mrs Arlene Nelson Acknowl- edgement is also due to the writercrs colleagues, including Robert A Longenbaugh, Harold R Duke, Daniel K Sunada and George Palos for their willingness to assume part of his responsibilities on other research projects and for their advice and encoura'gement Much of the spade work on com- puter programs and simulation techniques was accomplished by these individuals working on allied projects Utah State University provided the writer opportunity to attend the NSF Summer Institute in Water Resources Engineering and to complete his course requirements at that institution Graduate committee members Jay M Bagley, Calvin Clyde, Alvin Bishop, Bartell C Jensen, and Wendell L."Pope have all been helpful in the planning and development of this work The writer also appreciates the willing- ness of Cleve H Milligan and Donald B Sisson to serve on the dissertation co~nittee ii The U.S Geological Survey provided information on stream-aquifer systems in the Western United States Indi- viduals helpful in arranging for this information include Edward A Moulder, Thad G McLaughlin, and Harold E Thomas The Soil Conservation Service, USDA, provided information on water management problems, causes, and needs in stream=aquifer systems of the Western United States The interest and help of State Conservation Engineers and Tyler H Quackenbush, Irrigation Engineer, is gratefully acknowledged The National Center for Atmospheric Research, Boulder, Colorado, provided time on their digital computer for many of the analyses made for this study Last, but not least, the writer wishes to publically thank his wife and family for their patienqe, understanding, and encouragement during the fulfilling of this work Morton W iii Bitt~nger TABLE OF CONTENTS INTRODUCTION History of Water Development Initial development of surface water Large-scale storage and conveyance facilities Basin-planning and multiple-purpose concepts Groundwater development period Comprehensive planning Scope and Objectives 2 STREAM-AQUIFER SYSTEMS IN THE WESTERN UNITED STATES Columbia and Snake River Basins 10 The Great Basin 11 Colorado River Basin • 12 Western Gulf of Mexico Basins 12 Missouri River Basin 13 Lower Mississippi River Basin 14 Typical Water Management Problems 14 DESCRIPTIONS OF STREAM-AQUIFER SYSTEHS 17 Qualitative Classifications • • • • ••••• 17 Quantitative Description of Stream-Aquifer Systems 22 Input variables • • • • System parameters • • Output, or system response • • • 23 27 29 SIMULATION TECHNIQUES 30 Physical Models • • • 30 Mathematical Models 32 Exact solutions Finite-difference approximations 32 33 Development of a Mathematical Model for StreamAquifer Systems e 36 ••• Description of models studied • Accuracy of results as affected by finite-difference approximation • Basic assump·,tions • • • iv 40 • 41 45 TABLE OF CONTENTS (cont'd) STREAM-AQUIFER SYSTEM BEHAVIOR • · ··· total input Q · Q · time distribution of ·input areal distribution of input Q · System Parameters ·· aquifer characteristics ·· boundary conditions · · · initial conditions · · · · · Water Management Practices • • Influence of Input Variables Effect of Effect of Effect of Influence of Effect of Effect of Effect of Influence of 46 · · · ·· ·· ·· 46 48 48 54 54 ··· · 63 65 67 Drainage • • • • • • • Phreatophyte control Improvement of irrigation efficiency • • • Lining of canals • Composite effects 67 67 68 68 71 Integrated I-1anagement of Groundwater and Surface Water • • • • • 71 Planned groundwater pumping programs Planned recharge • • Problems of implementation • • 73 74 74 SUMMARY AND CONCLUSIONS • 75 Summary • • • • • • • Conclusions • • • • • • • Recommendations for further study • • LITERATURE CITED 46 75 76 78 80 APPENDIXES 84 Appendix A Table 11 85 Appendix B Table 12 • 92 Appendix C Table 13 96 Appendix D Table 14 99 Appendix E Table 15 · 102 Appendix F Tables 16, 17, 18 VITA • • v · 104 · • 107 LIST OF TABLES- Table 10 11 Water-management problems, causes and needs in major stream-aquifer systems • • • • • 15 Comparison of return-flow percentages obtained from calculations using at = day and at = 10 days • • • • • 43 Comparison of return-flow percentages obtained from calculations using ay = 66 feet and ay = 660 feet • • • • • • • • • • 44 Comparison of return-flow percentages obtained from analytical and finitedifference calculations • • • 45 Comparison of return-flow percentages obtained from calculations using different quantities of water added to the aquifer • 47 Compariso~ of return-flow percentages obtained from calculations using same total net Q but different time distributions • • 49 Return-flow characteristics of aquifers receiving water on approximately 75% of the surface area • • • • • • 53 Return-flow characteristics of aquifers receiving water on approximately 50% of the surface area e • • • • • • • • • • 54 Comparison of return-flow percentages obtained from calculations using various configurations of the bedrock 66 Comparison of return-flow percentages obtained from calculations for models having slo~ing and level initial water table surfaces • • 66 Summary of USGS District Office response to questionnaire on major stream-aquifer systems e • • • • • • • e • • • • • 85 vi LIST OF TABLES (cont'd) Table 12 Summary of SCS evaluations of water management problems, causes, and needs within major stream-aquifer systems of the Western States • • • • • • • • • • • • • 92 Description of one-dimensional models analyzed • • • • • • • • • • • • 96 14 Results of one-dimensional model analyses • 99 15 Description of two-dimensional models analyzed • • • • • • • • • • • 102 Results of two-dimensional model analyses ("A" time distribution of Q) • • • • • • 104 Results of two-dimensional model analyses C"B" time distribution of Q) • • • 106 Results of two-dimensional model analyses C"C" time distribution of Q) • • • • • • • 108 13 16 17 18 vii LIST OF FIGURES Figure Watercourse and other unconsolidated aquifers in the conterminous 17 Western States • • • Stages of river and valley development 18 Typical river-valley alluvial deposits • 20 Classification of river-valley alluvial fills Principal components of stream-aquifer systems • • • 26 Graphical representation of finite-difference schemes for slope at P • • • • • • 35 Chart for determining the maximum time step for stability of explicit finite-difference calculations • • • • • • • • • 38 Pattern of percentage return flow as influenced by location of water application area in respect to the stream • • 50 Comparison of return-flow patterns from various water application area situations • • • • • 52 Comparison of solution of Equation (20) with results from Model 153, • • • •• • 57 Influence of permeability magnitude on return-flow response • ··· 58 · · · 60 10 11 · · ·· ····· 12 13 14 15 Influence of permeability distribution on return-flow response ········· Influence of aquifer width on return-flow response ········· ··· Influence of lateral boundaries on returnflow response · ···· ·· ··· Influence of phreatophyte removal upon return-flow response • • • • • • viii 21 62 64 69 LIST OF FIGURES (cont'd) Figure 16 17 Page Influence of canal location on return-flow response • • • • • • 70 Composite effects of water management changes on return-flow response 72 ix Table 12 (Continued) Reach - River Nevada -Humbolt Truckee Walker New Mexico Gl.la Rio Grande Problems I a b a b c ~- Red Rock-Ariz St Line Colo St Ll.ne-So ml.les Pilar-Nr Totavi Cochl.tl.-Bernardo Jct of Rio Salado-Nr Hatch Nr Radl.um Sprl.nqs-El Paso All All Below Verendrye Jamestown-State Line Balo Hill Dam-Kathryn Oklahoma Cl.marron No Canadian Arkansas Washita Red All Above Bethany All Above Lake Texoma Below Lake Texoma Grande Ronde Powder Malheur Walla Walla So Dakota Bl.g Sioux Skunk Creek Verml.llion James Missouri White Grande Bad Cheyenne -~ Water management(a) Causes 112131415161718 Needs 112PI415161718 Winnemucca Basin Truckee Meadows Smi th Valley Mason Valley No Dakota Ml.ssouri Yellowstone Souris James Sheyenne Oregon -Willamette ~ All All Lower Lower Below Below Lower Below Below X~ X~ ~ X / II II / / V ~~ V / V ~ ~ ~ fIt1IEB / / X V '/ I)( ~ IX IX IX / !/ IX Euqene-Albany Salem-Oreqon City La Grande-Elqin Baker-North Powder Vale-Ontario Ml.lton-Freewater-St Line - X II • I)C: >< )( r>< >- )( L - - 0< / Half 50 ml.les Yankton Interior 50 ml.les Phl.llip Hot Sprinqs '/ '/'/ )( mmlll I~ /" 1/ V 1/ 1/ / / / / / ' /' / '/ I VV VV V V / / / V V ~V VV V V V V ~ V V 1/ / ~ ~ / V V / /' V -.0 W Table 12 (Continued) Reach River - Texas -Rio Grande Comanche Sprgs Pecos Biq Sprinq Los Moras Sprqs Guadalupe San Marcos Brazos San Jacinto Nueces Above E.l Paso At Fort Stockton Above Gl.rVl.n At Biq Sprinq At Brackettville Below New Braunfels Below San Marcos Below Whitney Dam Several of Tributarl.es Below Lake Corpus Chrl.stl water rnanagement(a) Causes Problems a b abc /)( VV V I>C I)( )( ~ :/ ~ Dei / ()( I /" ~ ~ ~ M [)I [.)( 1/ ~ ~ 1/ }III; '" I)( X )( / /' / I)( / V '/ / / t>< 1/ ~ / V / Needs D'C; / L / V / X V / utah Provo Jordon Sevier Beaver Coal Creek Weber & Ogden Bear Lower (Utah Valley) Utah Valley Lower (Salt Lake Valley) Upper Central Sevier Desert All Cedar City Valley East Shore Area Upper Washington Spokane Walla Walla Yakima Spokane Valley Above Toucnet Main stem Wyoming No Platte wind Biqhorn Green River All All All All [)C r>( [lit [)( "K A 1"- / IX )( / [)( ~ rlt The item / - The item blank - The item / I)( umllll II bJJiIl I IX( r r l i l T l IXlIIIITTl IX[ , I I I TT-' I 1/1 l I r I I I (a) The numbers in the table are keyed to the items below following: x - / 1IIIIIUlIII Marks in the squares iridicate the s a major problem, cause, or need; s a minor problem, cause, or need; s of little or no importance (continued) -.0 f::, Table 12 (Continued) Drainage problems Non-beneficial water use (phreatophytes, evaporation from high water table, etc.) Conflicts between surface water and ground water users: (a) now a problem (b) potentially a problem Quality problems (a) Chemical (b) Bacteriological (c) Physical (Color, odor, taste, etc.) Other Needs Causes Water management problems Canal seepage Reservoir seepage Excessive irrigation applications Water use on adjoining uplands Leakage from underlying artesian aquifers Poor natural drainage (low transmissibility) Lack of coordinated development and use of interrelated groundwater and surface water Other Artificial drainage Phreatophyte control Improvement of field irrigation Lining or sealing canals and/ or reservoirs Planned coordinated or integrated management of interrelated groundwater and surface water More information on system responses to changes in management practices Legislation allowing coordinated or integrated management of interrelated qroundwater and surface Other ~ 96 APPENDIX C Table 13.Description of one-~i~ensional a models an'l.lyze tl1l i::''~'l tn Irr No of trr dral,',3 d rawa area Canal Land active Perl"1e- Specific Initi1'l1 Canal area po- g po- arfii'l (I yie1d wrtter Bed660' ability Model i c table d rock e sur-& Q (Ne'll O~ sition:1 positio!O face~ sition no rows pattern b pattern 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 151 152 153 154 ISS 158 159 160 161 162 163 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 12 12 12 12 12 12 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0-1 4-5 8-9 12-13 0-1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 16 16 16 16 16 0 0 0 1 1 20 24 32 40 0-1 0 1 1 1 1 1 1 4-5 8-9 1 1 1 1 a 1 1 1 1 1 1 1 1 1 1 1 1 0 16 16 16 1 1 1 1 1 1 1 1 1 1 1 S 1 1 1 0 0 0-1 0-1 0-1 0-1 0 0 0 0 0 0 1-16 1-12 1-8 1-4 5-16 5-12 5-8 9-16 9-12 0 0 0 0 0 0 0 0 0 0 C 1-16 5-16 9-16 1-12 1-12 1-12 1-8 1-4 5-12 1-8 9-12 1-16 0 0 16 16 0 0 0 0 1 1 1 1 0 0 0 0 1-16 1-16 1-16 1-8 1-8 1-8 0 1-8 0 0 1-16 1-16 1-16 0 0 1-16 1-16 1-16 1-16 0 1-16 1-16 1-16 0 0 Q 0 0 0 1 1 0 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 O_ _J 0 0 0 0 0 0 0 Q 1 1 1 0 0 0 0 1-8 0 1-20 1-24 1-3:' 1-48 0 0 0 0 0 1 0 0 0 0 0 0 0 1-16 1-16 1-16 1-16 1-16 1-4 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 97 Footnotes Appendix C aSasic arrangement for one-dimensional Models Imperm - - - - : - - - - - - - -= : -: : -=-:.::-.1 Stream m -;.;.;,:;,:;.;;: -: - :-=== -: -_-_-.;-,.;-=.:;.~_;.,.-"'"- ==.-= = -t":= 100 ft -:2 bpermeability Row no 10 11 12 13 14 15 16 17 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 pattern no 0.02 0.05 0.006 0.02 0.05 0.006 0.02 0.05 0.007 0.02 0.05 0.007 0.02 0.05 0.008 0.02 0.05 0.008 0.02 0.05 0.009 0.02 0.05 0.009 0.02 0.05 0.010 0.02 0.05 0.010 0.02 0.05 0.011 0.02 0.05 0.011 0.02 0.05 0.012 0.02 0.05 0.012 0.02 0.05 0.013 0.02 0.05 0.013 0.02 0.05 0.014 0.002 0.002 0.004 0.004 0.006 0.006 0.008 0.008 0.010 0.010 0.012 0.012 0.014 0.014 0.016 0.016 0.018 0.006 0.006 0.008 0.008 0.010 0.010 0.013 0.013 0.016 0.016 0.013 0.013 0.010 0.010 0.008 0.008 0.006 0.001 0.001 0.006 0.006 0.011 0.011 0.016 0.016 0.022 0.022 0.016 0.016 0.011 0.011 0.006 0.006 0.001 cSpecific y~eld Pattern No Uniform throughout model at 0.20 Pattern No Uniform throughout model at 0.40 dlnitial water table Condition No Level eBedrock configuration Condition No Level, 50 feet below initial water table elevation Condition No Level, 100 feet below initial water table elevation Condition No Level, 25 feet below initial water table elevation Condition No Sloping toward river at feet per mile Average bedrock elevation 50 feet below initial water table elevation Condition No S1oping away from river at feet per mile Average bedrock elevation 50 feet below initial water table elevation Condition No S1oping away from river and impermeable boundary at 16 feet per mile to low point at center of model Average bedrock elevation SO feet below initial water table elevation f Land surface Condition No l Level, 10 feet above initial water table elevation gCanal position (Canal 50 feet in width) o - -indicates no canal O-l indicates canal is located between the impermeable boundary and the first 660-foot row 4-5 indicates canal is located between the 4th and 5th GGO-foot rows ETC hlrrigated area position I-lG indicates water applied to G60-foot rows through 12, with remaining rows in the model not receiving water ETC iWithdrawal area position (6GO-feet wide) o indicates no withdrawal of water 16 indicates row No 16 has water withdrawn from it (continued) 98 Footnotes Appendix C jCanal input o Q indicates no leakage from ~anal to ground~ater syster indicates ('anal leal;nqe to qroundwater at the r'l~e at acre-feet per d3Y per mile of calial length over the ti:ne peri')~! t=D to t=50 days kIrrigated area input Q o indicates no w3ter per.:;olation frorr' irriqated ,13::ds tc the ~rou~dwater systc~ indicates deep percolatio~ frOM irrigated lands to the groundwater as follo~s: to 10 days D.l ft during t 0.2 ft during t 10 to 2~ days 0.4 ft during t 20 to 30 days 0.2 ft durinq t 30 to 40 days 0.1 ft during t = 40 t.o 50 days and no deep percolation after t = 50 jays indicates deep percolation as follows: 0.05 ft during t o to 10 days 0.1 ft during t 10 to 20 days 0.2 ft during t = 20 to 30 days 0.1 ft durinq t 30 to 40 days 0.05 ft during t 40 to 50 days indicates deep percolation as follows: 0.2 ft during t O t o 10 days 0.4 ft during t 10 to 20 days 0.8 ft during t 20 to 30 days 0.4 ft during t 30 to 40 days 0.2 ft during t 40 to SO days indicates 0.1 ft water added to groundwater dur nq teO to 10 days only ind(catps 0.2 ft water added to groundwater dur n9 t-l0 to 20 days only indicates' • It, t't wat:er aaded to groundwater dur ng te20 to 30 days only lWithdrawal area net Q (negative input) o ind1cates no withdrawals indicates withdrawal of Same time schedule and amounts as the No condition under "Irrigated Area Input 0." APPENDIX D Table 14 Results of one-dimensional model analyses Calculated groundwater outflow to stream (percent of input Model Numbers Time 114 115 0.54 3.20 1.50 6.10 2.62 8.16 3.71 9.62 4.72 10.68 5.08 8.27 22 3.11 6.75 6.63 5.87 4.52 2.17 3.2"2 2.90 3.17 3.30 3.35 3.33 3.27 4.92 4.53 4.10 3.71 3.37 3.09 6.12 4.49 3.50 2.83 2.38 2.05 3.21 3.17 3.10 3.01 2.91 2.80 3.18 3.08 2.97 2.86 2.74 2.63 2.85 2.65 2.48 2.34 2.21 2.09 1.81 1.62 1.48 1.36 1.27 1.19 7.46 6.94 5.43 3.03 5.03 6.57 6.10 4.73 2.62 4.37 5.77 5.35 4.13 2.28 3.81 2.82 5.07 4.69 3.61 1.99 2.46 4.45 4.11 3.16 74 3.90 3.60 2.77 52 109 110 III 112 0.12 2.55 0.52 6.37 1.39 13.59 2.44 12.44 3.32 9.96 3.81 6.41 0.74 2.39 5.63 7.52 7.83 6.88 0.03 0.14 0.35 0.69 1.13 1.64 0.09 0.35 0.75 1.29 1.91 2.47 4.89 4.35 3.89 3.51 3.21 2.95 3.98 3.93 3.79 3.62 3.43 3.26 4.67 3.61 2.92 2.44 2.10 1.85 5.70 4.71 3.95 3.39 2.96 2.64 2.12 2.5l 2.84' 2.74 2.56 2.41 2.27 2.14 2.03 3.09 2.93 2.78 2.65 2.52 2.40 1.66 1.51 1.39 1.29 1.20 1.13 2.38 2.18 2.02 1.88 76 1.66 108 101 102 103 104 105 106 107 0-10 10-20 20-30 30-40 40-50 50-60 31 3.35 7.25 7.09 6.24 4.74 0.30 1.01 2.48 3.65 4.26 4.31 0.07 0.32 0.90 66 2.40 2.94 0.02 0.13 0.39 0.85 1.42 99 74 4.42 9.54 9.15 7.80 5.59 0.43 1.45 3.52 5.02 5.63 5.40 60-70 70-80 80-90 90-100 100-110 110-120 4.02 3.57 3.24 2.98 2.78 2.60 4.14 3.91 3.68 3.47 3.28 3.11 3.28 3.45 3.50 3.48 3.41 3.31 2.49 2.86 3.12 3.26 3.37 3.31 4.47 3.74 3.25 2.84 2.55 2.32 120-130 130-140 140-150 150-160 160-170 170-180 2.44 2.30 2.18 2.07 1.96 86 2.94 2.79 2.65 2.52 2.40 2.28 3.20 3.08 2.96 2.83 2.70 2.59 3.27 3.19 3.10 2.99 2.88 2.76 2.14 99 1.86 1.74 1.65 1.56 180-210 4.85 5.96 6.80 7.31 4.03 5.28 6.28 2.91 4.28 210-240 4.22 5.18 5.93 6.41 3.50 4.59 5.48 2.52 3.71 240-270 3.67 4.51 5.18 5.62 3.04 4.00 4.79 2.19 3.23 270-300 3.20 3.93 4.52 4.91 2.65 3.49 4.18 1.91 300-330 2.78 3.43 3.95 4.30 2.32 3.04 3.66 1.67 330-360 2.43 2.99 3.45 3.76 2.02 2.66 3.20 46 2.16 (days) Q) 3.0~ 113 116 117 118 119 59 6.23 4.04 5.71 8.71 12.11 8.41 11.28 7.25 9.28 5.31 6.25 0.33 0.34 0.25 93 3.29 4.08 0.30 0.30 0.20 1.82 3.09 3.86 75 4.46 9.67 9.44 8.29 6.27 3.90 3.50 3.22 3.00 2.81 2.65 4.33 3.70 3.24 2.90 2.63 2.41 4.71 3.74 3.08 2.61 2.27 2.01 4.03 3.84 3.64 3.44 3.25 08 3.86 3.73 3.57 3.41 3.25 3.10 5.28 4.63 4.14 3.75 3.41 3.11 2.50 2.37 2.25 2.13 2.03 1.93 2.24 2.09 1.96 1.84 74 1.65 1.81 1.66 1.53 1.43 34 1.26 2.92 2.77 2.64 2.51 2.38 2.27 2.95 2.81 2.68 2.55 2.43 2.31 2.85 2.61 2.40 2.20 2.03 1.86 4.29 3.24 5.92 6.05 4.44 3.73 2.81 5.15 5.27 3.53 3.26 2.44 4.49 4.60 2.81 3.32 2.83 2.13 3.91 4.00 2.23 2.89 2.48 1.86 3.41 3.50 78 2.53 2.16 63 2.97 3.05 1.42 \D \D ':able 14 (continued) Calculated groundwater outflow to stream (percent of input ~) Model Nwabers Time (days) 120 121 0-10 10-20 20-30 30-40 40-50 50-60 0.44 51 3.71 5.44 6.32 6.34 60-70 71)-aO 80-90 90-100 100-110 110-120 6.00 5.57 5.14 4.73 4.35 3.99 0.14 2.56 0.62 6.38 1.70 13.63 3.09 12.54 4.34 10.19 5.16 6.71 5.54 5.06 s.SiJ 4.09 5.42 3.45 5.16 3.01 4.84 2.67 51 2.40 0.74 2.41 5.69 7.69 8.14 7.34 6.32 5.45 4.77 4.24 3.81 3.46 4.37 10.34 21.50 17.25 12.05 6.02 3.79 2.73 2.14 78 53 1.36 120-130 130-140 140-150 150-160 160-170 170-180 3.67 3.38 3.10 2.86 2.63 2.42 4.18 3.87 3.57 3.30 3.04 2.80 2.18 1.99 1.83 1.68 1.54 1.42 3.16 2.89 2.65 2.44 2.25 2.07 1.22 1.10 1.00 0.92 0.85 0.78 122 123 124 125 126 127 128 129 130 131 133 134 135 136 137 138 0.33 0.S9 1.98 2.13 1.97 57 1.90 4.80 10.39 10.04 S.78 6.60 3.04 7.62 16.40 15.44 13.02 9.09 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.06 0.19 0.40 0.66 0.94 0.00 0.00 0.03 0.08 0.15 0.26 0.24 0.86 79 2.92 4.15 5.13 57 4.09 6.75 9.15 11.18 11.27 1.31 3.34 7.23 7.02 6.t7 4.68 1.31 3.34 7.23 7.02 6.17 4.68 5.54 4.84 4.30 3.86 3.49 3.16 7.01 5.55 4.44 3.56 2.86 2.31 O.O~ 0.02 0.0-) 0.04 O.OS 0.07 1.18 1.38 1.53 1.64 1.72 1.39 0.30 1.18 1.13 3.82 2.92 9.02 4.73 12.16 5.98 12.83 6.4S 11.40 6.40 9.49 6.10 7.72 5.69 6.24 5.24 S.04 4.81 4.06 4.40 3.28 0.00 0.00 0.00 0.00 0.00 0.00 33 1.17 1.06 0.97 0.91 0.85 0.90 2.31 5.02 4.99 4.41 3.38 2.86 2.54 2.31 2.14 2.00 1.88 0.00 0.00 0.00 0.00 0.00 0.00 0.39 0.55 0.72 0.88 1.04 LIS 5.70 10.10 5.87 8.54 5.60 7.04 5.51 5.74 5.17 4.66 4.80 3.87 3.97 3.53 3.21 2.96 2.75 2.58 3.97 3.53 3.21 2.96 2.7'l 2.58 0.80 0.77 0.74 0.71 0.68 0.66 78 70 1.62 1.56 1.50 1.45 2.86 2.60 2.37 2.15 1.97 1.79 1.86 1.50 1.21 0.98 0.79 0.64 0.08 0.10 0.11 0.13 0.15 0.16 1.80 1.82 1.82 1.81 1.80 78 4.02 3.66 3.34 3.05 2.78 2.53 2.64 2.13 1.72 1.39 1.12 0.91 0.00 0.00 0.00 0.00 0.01 0.01 31 1.41 SO 56 1.61 65 4.43 4.07 3.73 3.41 3.12 2.96 2.43 2.29 2.17 2.06 96 1.86 2.43 2.29 2.17 2.06 132 3.06 2.48 2.01 1.63 32 07 96 1.86 180-210 5.77 6.70 3.38 4.94 1.S6 1.81 3.95 4.15 1.16 0.60 S.10 5.90 1.59 0.08 5.01 6.69 1.aa 4.8b 4.86 210-240 4.59 5.34 2.70 3.94 1.49 1.68 3.62 3.22 0.65 0.70 4.82 4.57 0.93 0.14 4.92 5.22 1.10 4.23 4.23 240-270 3.65 4.26 2.15 3.14 1.19 57 3.34 2.49 0.38 0.79 4.53 3.55 0.54 0.20 4.75 4.07 0.65 3.69 1.69 270-300 2.91 3.40 1.71 2.51 0.95 1.48 3.09 1.94 0.22 0.86 4.25 2.76 0.32 0.27 4.53 3.1a 0.38 3.22 1.22 JOO-HO J2 2.71 1.37 2.00 0.76 1.40 2.86 1.50 0.13 0.92 3.97 2.15 0.19 0.34 4.29 2.48 0.22 2.82 l.a2 130-360 1.85 2.16 1.09 1.60 0.60 1.34 2.65 1.17 0.08 0.97 3.70 1.67 0.11 0.42 4.04 1.93 O.ll 2.4b 1.46 o o Table 14 (continued) Calculated groundwater outflow to tr (percent of input 0) !!2ul Time (days) 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100 100-110 110-120 120-130 130-140 140-150 150-160 160-170 170-180 180-210 210-240 240-270 270-300 300-330 330-360 139 1.31 3.36 7.31 7.22 6.38 4.86 4.18 3.65 3.31 3.04 2.82 2.64 2.48 2.33 2.20 2.08 1.97 1.87 4.84 4.18 4.18 3.14 2.72 2.17 141 1.50 3.79 8.19 7.88 7.29 5.08 4.26 3.73 3.35 3.06 2.82 2.62 2.45 2.30 2.16 2.04 1.92 1.82 4.68 4.02 3.46 2.98 2.57 2.22 142 1.66 4.16 8.97 8.51 7.29 5.31 4.38 3.79 3.37 3.04 2.78 2.56 2.37 2.21 2.06 1.94 1.82 1.71 4.38 3.75 3.23 2.78 2.40 2.07 143 1.17 3.03 6.60 6.64 6.00 4.73 4.10 3.69 3.38 3.14 2.93 2.74 2.58 2.44 2.31 2.18 2.07 96 5.08 4.39 3.80 3.29 2.85 2.47 144 0.85 2.28 5.05 5.44 5.16 4.31 3.84 3.51 3.26 3.05 2.87 2.71 2.56 2.43 2.ll 2.19 2.09 1.99 5.23 4.58 4.03 1.54 3.12 2.75 146 1.40 3.82 7.70 7.46 6.52 4.91 4.15 3.66 3.31 3.04 2.82 2.63 2.47 2.32 2.19 2.07 1.96 1.86 4.80 4.14 3.58 1.10 2.68 2.33 147 1.20 3.08 6.70 6.61 5.86 4.50 3.83 3.42 3.12 2.88 2.69 2.53 2.39 2.26 2.12 2.04 1.94 1.85 4.87 4.28 3.76 3.30 2.91 2.56 au.belLl 151 1~22 1.31 3.13 3.44 6.80 7.23 6.73 7.02 5.98 6.17 4.01 4.68 3.95 3.97 3.52 3.53 3.22 3.21 2.97 2.96 2.77 2.75 2.60 2.58 2.45 2.43 2.32 2.29 2.20 2.17 2.09 2.06 1.98 1.96 1.89 1.86 4.93 4.86 4.32 4.23 3.76 1.69 3.28 3.26 2.87 2.82 2.51 2.46 148 155 152 153 154 Jl 13.14 0.00 3.36 1.11 13.14 7.31 S.28 1.14 13.14 7.22 4.38 5.29 7.20 6.38 3.82 4.39 5.33 4.86 3.44 3.83 4.22 4.11 3,14 3.44 3.85 3.65 2'.91 3.15 3.46 3.ll 2.71 2.91 3.16 3.04 2.55 2.72 2.92 2.82 2.40 2.55 3.67 2.64 2.27 2.41 2.56 2.48 2.16 2.28 2.41 2.33 2.05 2.18 2.28 2.20 1.95 2.05 2.16 2.08 1.85 1.95 2.05 1.97 1.17 1.86 1.95 1.87 1.68 1.17 1.86 4.84 4.41 4.63 4.85 4.18 3.86 4.u4 4.43 1.6l 3.38 3.53 3.70 3.18 2.95 3.09 3.22 2.72 2.59 2.70 2.82 2.37 2.26 2.36 2.46 156 1.31 3.34 7.21 1.00 6.13 4.65 3.95 3.51 3.19 2.94 2.74 2.52 2.42 2.28 2.17 2.06 1.95 1.86 158 4.98 l2.17 25.16 22.01 15.98 8.29 4.66 2.67 1.54 0.89 0.51 0.30 0.17 0.10 0.06 0.03 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00 159 2.62 6.67 14.42 13.93 11.99 8.68 6.91 5.67 4.70 3.92 3.28 2.75 2.90 1.93 1.62 1.16 1.15 0.96 1.85 1.18 0.76 0.48 0.31 0.20 160 1.05 2.68 5.80 5.67 4.99 3.79 3.22 2.86 2.61 2.41 2.25 2.12 2.01 1.91 1.82 1.74 1.67 1.61 4.35 3.94 3.S8 3.26 2.97 2.71 161 0.88 2.23 4.84 4.73 4.16 3.16 2.69 2.39 2.17 2.01 1.88 1.77 1.68 1.60 53 1.47 1.42 37 3.75 3.45 1.19 2.97 2.77 2.58 162 163 0.66 0.53 1.34 1.67 3.63 3.55 3.12 2.37 2.01 79 1.63 51 1.41 1.33 1.26 1.20 1.15 1.10 1.06 1.03 2.84 2.63 2.46 2.32 2.20 2.09 2.94 2.84 2.50 1.90 1.61 43 30 21 1.13 1.06 01 0.96 0.92 0.88 0.85 0.82 2.27 2.11 98 1.86 1.77 1.69 o 102 APPENDIX E Table 15 Description of two-dimensional models analyzed a • permeabilitYb pattern specihc yield patternc 201 202 1 ~J I 1 1 1 1 1 Model no 204 205 206 207 208 209 210 211 212 213 214 1 2 Laterai bot;tnd(i arl.es 1 1 1 1 1 1 1 1 1 1 Inl.tl.al water tab1e e 1 3 1 1 3 3 3 3 3 3 219 1 1 1 1 J i 1 1 1 1 1 3 1 1 1 1 1 1 1 l i W W W 2 3 A,B,e A,B,e A,B,e 2 218 1 1 W W 1 0 1 1 2 1 A,B,C A,B,C A,B,e A,B,C A,B,C A,B,C A,B,C O,A,B,C O,A,B,e W W W W W W W 2 2 2 2 / i 1 1 3 I" , , 4- Imperm L :'" T 6x 1 = 320 or 26 o lIy=1320 ft i 456 1I f ;±±' i T= n bpermeability Row No 10 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Pattern No 0.006 0.002 0.006 0.007 0.004 O 008 0.008 0.006 0.010 0.009 0.008 0.013 0.010 0.010 0.016 0.011 0.012 0.013 0.012 0.014 0.010 0.013 0.016 0.003 0.014 0.018 0.006 0.001 0.006 0.011 0.016 0.022 0.016 0.011 0.006 0.001 (All values in feet per second) cspecific yield Pattern no I Uniform throuqhout model at 0.20 O,w bdry 1_ O,W A,B,C A,B,e A,B,C A,B,C A,B,C e C 1 1 2 + 111 t w 2 CoL W W A,B,e A,B-,e 1, 1 i / W \i 1 aBaeie qrid arranqement for two-dimensional models Row / / / / / / / / ~ / / /~ / / '" / W 1 i ! 2 areal k uistr W Net Q- A,B,C AlBIC A,e,C A,e,e A,B,e A,B,C 3 1 Net Qti:ne distr j A,a,e 1 216 217 225 226 227 218 229 230 1 215 211! 22 ~yi 1 1 1 1 ~Xh 1 1 220 221 222 Bed- f Land g rock surface Stream 100 ft X X X X X y z 103 Appendix E (continued) dLatera1 boundaries Condi tion No Parallel boundaries Condition ~o Converging bound3ries Condition No Diverg ing l'ounuar ies • ! 'f 1'1) ~ j 1- ~ I· / lO-mile test reach 10-mi1e test reach 10-mile test reach eInitial water table Condition No l Level with 50 feat of saturated thickness Condition No Sloping in the x-direction at feet per mile, with 50 feet of saturated thickness Condition No S10ping in the x-direction at feet per mile and in the y-direction (toward the river) at feet per mile Average initial saturated thickness of 50 feet f8edrock configuration Condition No l Level Condition No S1ope in x-direction (downstream) at feet per mile Condition No Slope in x-direction and in y-direction (downstream and toward river) at feet per mile Condition No No slope in x-direction, slope in y-direction away from the river at feet per mile Condition No S No slope in x-direction,slope in y-direction away from the river at 16 feet per mile to low point in Row No.6, then upwards at 16 feet per mile to Row gLand aurface Condition No l Level, 10 feet above initial water table elevation Condition No S1ope in x-direction, feet per mile Condition No S1ope in x-direction at feet per mile downstream and slope in y-direction at feet per mile toward river hOelta x Condition No l AX • 1320 feet Condition No l'lx 42640 feet i Oelta y Condition No l l'lY '" 1320 feet jNet Q input, time distribution Input O No water added to groundwater Input A One foot of water added to groundwater initial water table t • O Input 0.10 ft added during t s to 10 days 0.30 ft added during t 10 to 20 days 0.20 ft added during t '" 20 to 30 days 0.15 ft added during t 30 to 40 days 0.10 ft added during t 40 to 50 days 0.05 ft added during t 50 to 60 days 0.05 ft added during t 60 to 70 days 0.05 ft added during t 70 to 80 days, Input C O.IO ft added during t o to 10 days 0.20 ft added during t 10 to 20 days 0.40 ft added during t 20 to 30 days 0.20 ft added during t 30 to 40 days 0.10 ft added during t 40 to 50 days kNet Q input, areal distribution Input W Uniform over model area Input X Uniform over all grid cells except the center grid (row 6, column 13 for the ~X s 2640 ft models) A negative Q of 20 acre-feet per day is superimposed on this grid for the full period of calculation n Input Y The "C time distribution of water input is applied to 75% of the grid cells chosen randomly from a uniform distribution Input Z The "COO time distribution of water input is applied to 59% of the grid cells chosen randomly from a uniform distribution 104 APPEr;~I:\ Table 16 Results of two-dir!1ensional ~odel r 3!'lal:,'ses (tthlt : i Calculate] g!'()undwater outflow to stream ;"'o~el :1'.lmbers Time (da~s) 201A 0-10 10-20 20-30 30-40 40-50 50-60 13 03 13.03 7.4b 7.4:' 5.49 5.48 4.51 4.50 3.92 3.90 3.51 3.49 202A ~ql-"~ 204A_ 20SA 22.24 13.03 13 03 15.27 7.46 7.4C 12.30 '.>.49 5.48 11 49 4.51 4.51 10.59 3.92 3.91 9.88 51 3.50 =~e c~ i i~.; U t.1 ::":: c" of in?'Jt (I) s~r (per~ent (') 2l-tA 208A 209A 210A 211A 212A 22.24 15.00 15.28 8.17 12.81 5.90 11 50 4.79 10.60 4.11 9.89 3.64 26.04 17.09 14.01 12.35 11 21 10.34 29.29 18.47 14.78 12.76 11 39 10.35 19.'35 18.25 13.03 11 92 14.02 7.45 7.05 12.40 5.46 5.10 11 45 4.46 4.27 4.72 10.73 3.64 10.12 3.40 3.34 29 3.02 2.79 2.59 2.42 9.51 8.80 8.19 7.66 7.18 6.75 9.67 9.13 8.63 S.16 7.73 7.32 9.57 9.06 8.53 8.14 7.72 7.33 3.06 2.80 2.58 2.38 2.22 2.08 3.06 2.84 2.65 2.49 2.36 2.24 20GA 207A 14.72 12.81 U.72 10.93 10.26 60-70 70-80 80-90 90-100 100-110 110-120 3.20 2.96 2.76 2.58 2.43 2.29 3.18 2.93 2.72 2.55 2.40 2.26 9.28 a.75 8.26 7.82 7.41 7.03 3.20 2.96 2.76 2.58 2.43 2.29 3.19 2.94 2.74 2.57 2.42 2.28 9.29 8.76 8.27 7.83 7.42 7.04 ~.28 9.61 8.98 8.42 7.92 7.46 7.04 120-130 130-140 140-150 150-160 160-170 170-180 2.17 2.06 1.95 1.85 76 1.68 2.14 2.03 92 1.83 74 1.65 6.68 6.34 6.03 5.74 5.46 5.20 2.17 2.06 95 85 76 68 2.16 2.04 94 84 75 55 0.68 6.34 6.03 5.75 5.45 5.19 2.14 2.02 1.91 1.81 1.72 1.63 6.64 6.29 5.96 5.64 5.35 5.08 6.36 6.00 5.67 5.36 5.08 4.82 6.94 6.58 6.25 5.93 5.63 5.36 6.97 6.62 6.30 6.00 5.71 5.44 95 83 73 63 S5 47 2.12 2.02 93 84 76 68 180-210 4.38 4.31 13.63 4.22 13.21 12.53 13.99 14.31 3.82 4.48 3.80 3.76 13.68 4.38 11 97 3.80 4.35 210-240 3.79 11 90 3.66 11.44 10.86 12.16 12.53 3.34 3.97 240-270 3.31 3.29 10.50 3.30 10.42 3.19 9.93 9.44 10.60 H.OO 2.94 3.54 3.16 3.31 210-300 2.89 2.88 9.24 2.89 2.88 9.14 2.78 8.65 8.23 9.25 9.68 2.60 300-330 2.52 2.53 8.15 2.52 2.52 8.04 2.43 7.54 7.12 8.10 8.55 2.31 2.83 330-360 2.20 2.22 7.21 2.20 2.21 7.08 2.14 6.50 6.30 7.10 7.56 2.06 2.54 Time (days) 215A 0-10 10-20 20-30 30-40 40-50 50-60 11.96 13.03 7.05 7.46 5.25 5.48 4.36 4.51 3.81 3.91 3.43- 3.50 216A 217A 218A 219A 15.00 16.67 11.56 8.17 8.76 7.11 5.90 6.19 5.42 4.79 4.96 4.56 4.11 4.21 4.02 3.64 3.68 3.64 220A 221A 222A 224A 22sA 226A 8.44 5.97 4.84 4.20 3.78 3.47 21.98 14.98 12.40 10.96 9.95 9.15 21.96 15.04 12.52 11.16 10.24 9.53 13.80 7.88 5.78 4.73 4.10 3.65 15.89 8.63 6.21 5.03 4.30 3.79 17.65 12.24 9.20 7.51 6.52 5.71 5.20 4.79 4.39 4.21 3.83 3.80 227A 228A 8.94 6.31 5.11 4.42 3.97 3.63 60-70 70-80 80-90 90-100 100-110 110-120 3.14 2.91 2.72 2.56 2.42 2.36 3.19 2.95 2.75 2.57 2.42 2.29 3.29 3.01 2.78 2.59 2.42 2.27 3.30 2.98 2.73 2.52 2.34 2.18 3.34 3.10 2.89 2.71 2.55 2.41 3.22 3.01 2.83 2.67 2.52 2.39 8.48 7.89 7.37 6.90 6.46 6.07 8.94 8.44 8.00 7.60 7.25 6.93 3.32 3.05 2.83 2.64 2.48 2.33 3.41 3.11 2.86 2.65 2.47 2.30 3.40 3.07 2.79 2.57 2.37 2.20 3.48 3.21 2.99 2.79 2.62 2.46 3.37 3.13 2.93 2.76 2.60 2.46 120-130 130-140 140-150 150-160 160-170 170-180 2.10 2.06 1.97 1.88 7!1 1.71 2.17 2.06 1.95 1.36 1.77 69 2.13 2.01 1.90 1.80 70 1.60 2.04 91 1.30 1.69 60 51 2.23 2.16 2.04 94 84 75 2.27 2.16 2.06 96 87 78 5.71 5.37 5.06 4.77 4.51 4.25 6.63 6.36 6.11 5.78 5.65 5.45 2.19 2.08 95 85 75 66 2.16 2.03 90 79 1.69 59 2.05 1.91 79 67 1.57 48 2.32 2.19 2.07 95 84 74 2.32 2.20 2.09 98 88 79 180-210 4.52 4.44 4.16 3.89 4.53 4.70 10.97 14.90 4.26 4.04 73 4.46 4.66 210-240 3.99 3.90 3.59 3.35 3.93 4.13 9.41 13 63 3.65 3.41 3.14 3.80 4.04 240-270 3.54 3.44 3.10 2.89 3.41 3.64 8.08 12.54 3.12 2.88 2.64 3.23 3.50 270-300 3.14 3.04 2.68 2.50 2.96 3.22 6.93 11.60 {,7 2.42 2.22 2.75 04 200-330 2.80 2.70 2.32 2.16 2.58 2.84 5.94 10.78 2.27 2.03 86 2.33 2.63 330-360 2.51 2.40 2.01 87 2.24 2.52 5.09 10.06 93 69 1.5·1 96 2.28 105 APPE~;)E Table 17 Results of t; o-c'llr.'.cnsiol1"ll C31culatcd ~,oc1el grou~dw~ter F a:l3 :.::'SCs outflow to r~odcl ("5" :::i::e (:.:.strlb:.lti:o:' c' 0l stre~~ (per:0nt nf in~u';: QJ n;Jrlbers - Time (day.,;;;s.: )_ _2_01 R 202Il 2038 2040 205" 0-10 10-20 20-30 3G-40 40-50 50-60 1.23 4.44 5.28 5.48 5.25 4.66 23 4.44 5.23 5.43 5.23 4.65 9.6C! 23 4.44 5.24 5.43 5.19 4.61 23 4.44 5.2fi 60-70 70-80 80-90 90-100 100-110 110-120 4.42 4.30 3.63 3.23 2.96 2.77 4.40 4.28 3.61 3.21 2.92 2.72 4.37 4.26 3.59 3.20 2.92 2.71 4.41 4.30 62 22 2.94 120-130 130-140 140-150 150-160 160-170 170-180 2.56 2.40 2.26 2.14 2.03 1.92 2.53 2.39 6.74 2.22 6.39 2.11 2.00 90 6.07 5.76 5.48 2.54 2.38 2.25 2.13 2.02 1.92 2.54 2.39 2.25 2.13 180-210 5.00 4.93 14.38 210-240 4.34 4.29 12.56 240-270 3.77 3.74 270-300 3.28 300-330 2.86 330-360 2.49 11.92 12.43 12.39 11 92 11 08 - 2068 .-,,~- 5.4~ 5.24 4.66 9.70 11 92 12.44 12.39 11 92 21113 212B 2148 7.95 10.52 11 50 11 SO 11 60 11 00 23 4.4·1 5.27 1.11 5.-17 5.21 61 5.10 -L 91 4.39 10.79 10.42 9.55 8.88 8.33 7.84 10.58 10.25 9.45 B.83 8.30 4.34 4.21 3.51 4.17 4.07 3.47 3.10 2.84 2.64 7.42 2J7R 208E 1.42 5.09 5.92 11 60 13.26 r!.t6 13.6Q 13.89 13.53 12.85 11 77 15.09 14.92 14.31 13.32 12.01 11.20 12.06 12.25 11.96 11.26 11.21 10.63 9.39 8.55 7.90 7.35 6.;J 5.74 =2: ;0 ::.9 ;:.8 210 B 11 03 5.01 10.56 10.17 9.23 8.56 8.01 7.54 4.73 4.58 3.79 3.02 2.77 11.10 10.61 9.51 8.74 8.12 7.60 2.02 91 7.12 6.74 6.39 6.06 5.76 5.47 2.57 2.40 2.27 2.10 2.00 1.89 7.14 6.63 6.43 5.99 5.67 5.37 6.87 6.45 6.07 5.72 5.40 5.11 7.40 7.00 6.63 6.28 5.96 5.66 4.99 4.97 14.33 4.87 13.94 13.24 4.35 4.32 12.50 4.21 12.05 11.44 11 01 3.79 3.76 10.93 3.65 10.45 9.93 3.27 9.68 3.31 3.28 9.58 3.18 9.08 2.87 8.53 2.89 2.87 8.42 2.77 7.92 2.52 7.54 2.53 2.51 7.41 2.43 6.92 10.5'> 10.17 9.28 8.55 8.01 7.54 7.12 2.73 3.33 7.84 3.09 2.79 2.56 4.04 4.87 6.67 6.34 6.03 5.74 2.36 2.20 2.05 92 81 70 91 14.75 15.06 4.39 5.05 12.80 13.16 3.81 4.47 11.14 11 57 3.32 3.97 8.64 9.72 10.14 2.92 3.53 7.54 8.50 8.95 2.58 3.16 6.60 7.45 7.91 2.29 2.83 2259 50 5.37 6.24 6.38 6.02 5.26 226B 1.67 5.94 6.79 6.87 6.40 5.51 227B 4.20 5.13 5.44 5.30 4.80 2288 0.83 3.12 4.05 4.48 4.53 4.93 4.77 3.93 3.43 3.10 2.83 5.13 4.93 3.97 3.43 3.06 2.77 4.59 4.49 3.87 3.47 3.;18 2.95 2.53 )] 2.16 2.01 87 75 2.75 2.57 2.42 2.28 2.02 2.71 2.55 2.41 2.28 2.16 2.05 7.03 2.48 2.34 2.22 2.11 2.01 Time ~(d~a~y~s~) 2~1~5~B~~216B 217R 218B 219B 220B 221B 222B 224B 0-10 10-20 20-30 30-40 40-50 50-60 1.12 4.06 4.91 5.15 4.97 4.46 1.23 4.44 5.28 5.48 5.24 4.66 42 5.09 5.92 6.07 5.74 5.03 58 5.63 fi.45 6.54 7.87 9.65 2.95 11.72 3.85 12.08 4.26 11 91 4.32 11.32 4.07 10.39 9.66 11 77 30 12.19 5.56 5.77 5.28 1.09 3.98 4.87 5.17 5.05 4.59 60-70 70-80 80-90 90-100 100-110 110-120 4.24 4.15 3.55 3.18 2.92 2.71 4.41 4.30 3.61 3.23 2.95 2.73 4.72 4.58 3.78 3.33 4.39 4.31 3.72 3.35 3.08 2.87 3.96 3.92 3.51 3.22 2.99 9.79 9.34 8.36 7.66 3.01 2.77 4.93 4.74 3.84 3.33 2.99 2.71 2.80 6.60 120-130 130-140 140-150 150-160 160-17C 170-180 2.54 2.40 2.27 2.15 2.04 1.35 2.55 2.40 2.27 2.14 2.04 1.93 2.56 2.39 2.24 2.11 98 87 2.50 2.31 2.15 2.01 88 1.77 2.68 2.52 2.38 2.24 2.12 2.01 2.64 2.50 2.36 2.24 2.13 2.03 180-210 5.12 5.06 4.81 4.52 210-240 4.51 4.43 4.13 3.87 240-270 3.99 3.81 3.56 3.32 270-300 3.53 3.51 3.07 300-330 3.]4 3.04 330-360 2.31 2.70 6.11 12.08 11 58 10.74 4.69 5.50 4.88 1.15 4.26 10.23 9.87 8.98 8.35 7.86 7.45 4.61 4.48 3.76 3.33 3.03 6.17 5.78 5.43 5.10 4.80 4.53 7.08 6.75 2.60 2.44 2.61 6.46 2.29 2.15 ,;L26 5.71 2.03 92 2.12 99 87 5.21 5.32 11 63 15.55 4.92 4.72 4.40 5.17 5.32 4.50 4.67 9.95 14.17 4.21 3.99 3.69 4.41 4.60 3.90 4.10 8.53 12.99 3.68 ! I 3.10 3.75 3.99 2.87 3.39 3.62 7.31 11 97 3.08 2.60 3.19 3.46 2.G6 2.41l 2.Q4 3.20 6.27 11.10 2.63 2.39 2.20 2.71 3.00 2.30 L 15 2.56 2.83 5.37 10 H 2.24 2.00 1.83 2.30 2.60 7.09 6.19 5.94 2.BO 2.43 2.15 4.14 4.09 3.65 3.34 3.09 2.89 106 APPENDIX F Table 18 Results of two-dimensional model analyses ("C" time distribution of Q) • Calculated groundwater outflow to stream (percent of input Q) Model numbers Time (da;ls) 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100 100-110 110-120 120-130 130-140 140-150 150-160 lfiO-l70 170-180 180-210 210-240 240-210 270-300 300-330 330-JaO Time (dale) 0-10 10-20 20-30 30-40 40-50 50-60 60-10 10-80 80-90 90-100 100-110 110-120 120-130 130-140 140-150 150-160 160-170 170-180 180-210 210-240 240-270 270-300 300-330 330-360 202C 203C 204C 20SC 206C 207C 23 3.21 7.00 7.07 6.2B 4.83 4.07 3.59 3.24 2.98 2.76 2.58 9.69 10.70 14.10 14.03 13.03 11 31 10.25 9.48 B.85 8.31 7.B4 7.41 23 3.20 6.97 7.01 6.22 4.78 4.04 3.57 3.23 2.98 2.77 2.59 23 3.21 7.00 7.0B 6.30 4.84 4.08 3.60 3.26 3.00 2.78 2.60 9.70 10.69 14.10 14.04 13.03 11.32 10.26 9.4B 8.86 8.32 7.84 7.41 42 3.66 7.95 7.88 6.89 5.18 4.31 3.76 3.37 3.07 2.83 2.63 2.43 2.43 7.01 2.28 6.65 2.16 6.31 2.05 5.99 1.94 5.70 1.84 5.42 4.80 14.24 4.18 12.45 3.65 10.91 3.19 9.59 2.BO 8.46 2.46 7.48 2.44 2.30 2.18 2.07 1.96 1.87 4.87 4.24 3.70 3.23 2.82 2.47 2.44 7.01 2.30 6.65 2.1B 6.31 2.06 5.99 96 5.69 1.86 5.41 4.84 14.19 4.20 12.38 3.66 to.8} 3.20 9.49 2.79 B.H 2.45 7.35 2.46 2.30 2.17 2.05 1.93 83 4.73 4.09 3.55 3.09 2.70 2.37 208C 11.60 12.27 15.85 15.41 14.05 11 97 10.71 9.80 9.08 8.47 7.93 7.45 7.02 6.62 6.25 5.92 5.60 5.31 13.79 11 93 10.35 _""':';_,_ , 9.00 7.84 6.85 216C 1.23 3.21 1.00 7.08 6.l0 4.85 4.08 3.60 3.26 3.00 2.79 2.61 2.45 2.31 2.19 2.0B 1.98 88 4.92 4.31 3.79 3:55 2.96 2.63 217C 1.42 3.66 1.95 7.88 6.89 5.18 4.30 3.76 3.37 3.01 2.83 2.62 2.45 2.29 2.16 2.03 92 1.81 4.67 4.01 3.46 2.99 2.59 2.24 219C 09 2.88 6.34 6.63 6.01 4.84 4.16 3.72 3.40 3.14 2.93 2.74 2.58 2.43 2.30 2.17 2.06 95 5.06 4.38 3.80 3.30 2.87 2.49 220C 0.79 2.16 4.84 5.40 5.20 4.39 3.89 3.54 3.27 3.05 2.B6 2.70 2.55 2.42 2.29 2.18 2.07 97 5.19 4.55 4.01 3.54 3.12 2.76 222e 9.66 10.56 13.83 13.70 12.67 10.91 9.93 9.19 8.60 8.11 1.68 7.31 6.97 6.66 6.38 6.12 5.88 5.66 15.41 14.06 12.90 11.90 11.04 10.28 224C 1.30 3.38 7.39 1.46 6.62 5.07 4.26 3.74 3.38 3.09 2.86 2.67 2.49 2.34 2.21 2.08 97 86 4.78 4.09 3.50 3.00 2.56 2.18 201C 23 3.21 7.00 7.09 6.30 4.85 4.09 3.61 3.27 3.01 2.79 2.61 2.45 2.32 2.19 2.07 1.97 1.87 4.86 4.22 3.67 3.20 2.79 218C 58 4.04 8.74 8.50 1.33 5.39 4.42 3.81 3.38 3.05 2.78 2.56 2.37 2.20 2.06 1.93 1.81 1.71 4.38 3.75 3.29 2.79 2.41 2.09 221C 9.65 10.51 13.72 13.52 12.40 10.61 9.48 8.66 7.99 7.41 6.91 6.46 6.05 5.68 5.34 5.03 4.74 4.47 11 49 9.B4 8.43 7.24 6.21 5.31 ~~~L> 209C 13.26 13.51 17.15 16.31 14.59 12.16 10.73 9.71 8.91 8.25 7.68 7.18 6.74 6.34 5.97 5.64 5.33 5.05 13.09 11.32 9.83 8.56 7.48 6.54 2l0C 211C Q.66 10.11 13.48 13.77 13 04 11 56 7.95 9.52 12.78 13.22 12.64 11 33 10.43 9.73 9.14 8.62 8.15 7.71 7.31 6.94 6.59 6.27 5.96 5.67 10.58 9.84 9.21 8.66 8.17 7.71 7.29 6.91 6.55 6.21 5.89 5.59 14.60 12.67 11.03 9.62 8.42 7.38 225C 1.50 3.86 B.39 8.29 7.24 5.41 4.48 3.90 3.4B 3.16 2.90 2.68 2.49 2.32 2.18 2.04 92 80 4.57 3.87 3.26 2.75 2.32 226C 1.67 4.25 9.22 8.95 7.70 5.63 4.60 3.95 3.48 3.12 2.84 2.60 2.40 2.22 2.06 93 80 69 4.24 3.57 3.00 2.53 2.12 94 77 aMode1s 229 and 230 represent the mean of 20 calculations 14.91 13.04 11 43 10.05 8.81 7.B4 227C 1.15 3.04 6.69 6.99 6.38 5.07 4.35 3.88 3.53 3.25 2.99 2.B5 2.64 2.48 2.34 2.20 2.08 96 5.02 4.28 3.64 3.10 2.63 2.23 212C 23 3.21 6.99 7.07 6.27 4.80 4.01 3.50 3.14 2.85 2.62 2.42 2.25 2.10 97 1.85 75 1.65 4.26 3.70 3.24 2.B5 2.52 2.24 22Be 0.83 2.28 5.10 5.69 5.46 4.61 4.06 ).69 3.40 3.16 2.96 2.78 2.62 2.47 2.34 2.21 2.10 99 5.17 4.48 3.89 3.37 2.93 2.53 214C 21SC 1.11 2.93 6.41 6.58 5.91 4.59 3.89 3.44 3.13 2.89 2.69 2.53 1.11 2.94 6.44 6.64 5.98 4.68 3.97 3.53 3.21 2.96 2.76 2.59 2.39 2.26 2.15 2.05 1.95 1.86 4.93 4.31 3.89 3.46 3.09 2.77 2.44 2.31 2.20 2.09 99 1.90 4.99 4.40 3.89 3.45 3.07 2.74 229C a 1.) 3.2 7.1 1.1 6.3 4.8 4.1 3.6 3.2 3.0 2.7 2.6 2.5 2.3 2.2 2.0 2.0 1.8 4.9 4.2 3.7 3.2 2.8 2.4 noc· 1.3 3.2 7.1 7.0 6.3 4.7 4.0 3.6 3.2 2.9 2.8 2.6 2.4 2.3 2.2 2.0 2.0 1.9 4.B 4.1 3.7 3.3 2.8 2.5 107 VITA Morton W Bittinger Candidate for the Degree of Doctor of Philosophy Dissertation: Simulation and Analysis of Stream-Aquifer Systems Major Civil Engineering Fie1d~ Biographical Information: Personal Data~ Born at Marathon, Iowa, August 14, 1927, son of Wilbur T and Effie Hovinga Bittinger; married Carolyn Wiese December 26, 1948; three children Cathleen, Ruth, and Thomas Education: Attended grade and high school at Webb, Iowa, graduating in 1945; received the Bachelor of Science and Master of Science degrees from Iowa State University in Agricultural Engineering in 1949 and 1951, respectively Professional Experience~ 1957 to 1967, assistant professor and associate professor, Civil Engineering Department, Colorado State University, in charge of groundwater research and teaching program; 1955-57, in charge of branch office of consulting engineering firm in Algona, Iowa, 1949-55, instructor and research associate, Agricultural Engineering Department, Iowa State University ... interrelationships of stream-aquifer systems To discuss the potentials and problems of implementing integrated management of groundwater and surface water within complex stream-aquifer systems The first four of. .. Effect of Effect of Effect of Influence of Effect of Effect of Effect of Influence of 46 · · · ·· ·· ·· 46 48 48 54 54 ··· · 63 65 67 Drainage • • • • • • • Phreatophyte control Improvement of. .. recharge of groundwater and return flow as a result of the use of surface water for irrigation, and erratic seasonal and annual runoff patterns In order to obtain information on stream-aquifer systems

Ngày đăng: 23/10/2022, 17:25

Xem thêm:

w