1. Trang chủ
  2. » Ngoại Ngữ

Late-Quaternary Vegetational and Geomorphic History of the Allegh

124 3 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Late-Quaternary Vegetational and Geomorphic History of the Allegheny Plateau at Big Run Bog, Tucker County, West Virginia
Tác giả Peter A. Larabee
Người hướng dẫn Paul A. Delcourt, Major Professor, Richard Arnseth, Thomas Broadhead, Hazel Delcourt
Trường học University of Tennessee
Chuyên ngành Geology
Thể loại master's thesis
Năm xuất bản 1986
Thành phố Knoxville
Định dạng
Số trang 124
Dung lượng 7,61 MB

Nội dung

University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 6-1986 Late-Quaternary Vegetational and Geomorphic History of the Allegheny Plateau at Big Run Bog, Tucker County, West Virginia Peter A Larabee University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Geology Commons Recommended Citation Larabee, Peter A., "Late-Quaternary Vegetational and Geomorphic History of the Allegheny Plateau at Big Run Bog, Tucker County, West Virginia " Master's Thesis, University of Tennessee, 1986 https://trace.tennessee.edu/utk_gradthes/3539 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange For more information, please contact trace@utk.edu To the Graduate Council: I am submitting herewith a thesis written by Peter A Larabee entitled "Late-Quaternary Vegetational and Geomorphic History of the Allegheny Plateau at Big Run Bog, Tucker County, West Virginia." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Geology Paul A Delcourt, Major Professor We have read this thesis and recommend its acceptance: Richard Arnseth, Thomas Broadhead, Hazel Delcourt Accepted for the Council: Carolyn R Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official student records.) To the Graduate Council: I am submitti ng herewith a thesis written by Peter A Larabee enti tled "Late-Quaternary Vegetational and Geomorphic History of the All egheny Plateau at Big Run Bog, Tucker County, West Virginia." I have examined the final copy of this thesi s for form and content and recommend that i t be accepted in partial fulfillment of the requirements for the degree of Master of Science, wi th a major in Geology �cwiO.D� Paul A Delcourt, Major Professor We have read thi s thesis and recommend its acceptance: �-.11)� �2,� �&� Accepted for the Council: Vice Provost and Dean of The Graduate School LATE-QUATERNARY VEGETATIONAL AND GEOMORPHIC HISTORY OF THE ALLEGHENY PLATEAU AT BIG RUN BOG , TUCKER COUNTY , WEST VIRGINIA A Thesis Presented for the Master of Science Degree The University of Tennessee , Knoxville Peter A Larabee June 986 ACKNOWLEDGEMENTS I would like to thank a number of people who participated or aided in the retrieval of the sediment cores Dr Joseph Yavitt, Dr James McGraw, and Dr Gerald Lang were sources of crucial information about the bog during field work I thank Drs Paul and Hazel Delcourt and Mr Don Rosowitz for assistance during coring I would like to express my gratitude to Dr Gerald Lang, West Virginia University, for providing access to relevant modern research completed on Big Run Bog, without which, this study would have been measureably more difficult This study was made possible thanks to financial assistance from the Discretionary Fund, Department of Geological Sciences, University of Tennessee, Knoxville and from the Ecology Program from the National Science Foundation, Grant Numbers BSR-83-00345 and BSR-84- 15652 Mr E Newman Smith Jr and Mr Don Rosowitz were important sources for both technical advice and assistance, as well as springboard for informal discussion concerning this s tudy I would like to express my gratitude to the members of my committee Dr Paul Delcourt, Dr Hazel Delcourt, Dr Thomas Broadhead, and Dr Richard Arnseth for their advice, helpful suggestions, and constructive criticisms My final thanks are to my wife Elizabeth, for her faith, encouragement, and love ii Paleoecological analysis of a m sediment core from Big Run Bog, Tucker County , West Virginia (39° 07'N , 79° 35'W) , provides an integrated and continuous record of vegetation change for the Allegheny Plateau of the central Appalachians for the past 17 , 000 yr from the full -glacial conditions of the Wisconsin through the Holocene Big Run Bog (980 m elevation) is high-elevation wetland within the Allegheny Mountain section of the Appalachian Plateaus physiographic province From 17 , 040 yr B.P to 13 , 860 yr B P the plant communities surrounding the site were a mosaic of alpine tundra dominated by sedges (Cyperaceae) and grasses (Gramineae) with total pollen accumulation rates averaging 1 58 gr•cm-2•yr - By , 860 yr B P , late-glacial climatic warming as well as an increase in effective available moisture allowed the migration of spruce (Picea) and fir (Abies) onto the plateau , and favored the concurrent increase in colluvial activity within the watershed of Big Run Bog From 13 , 860 yr B P to 1 ,760 yr B P , continuing epi sodes of colluvial activity and the instability of the montane landscape may have i nhibited initial colonization and the eventual closing of the boreal forest , despite favorable climatic condi tions The period from 1 , 760 yr B P to , 825 yr B P was a period of landscape stabilization , a changeover from colluvial to fluvial processes , and a fundamental change in clay mineralogy The boreal forest in the uplands surrounding Big Run Bog was displaced by a mixed coni fer -northern hardwood forest by , 500 yr iii B P , with oak (Quercus) , birch (Betula) , and hemlock (Tsuga) comprising the upland dominants Through the period from 8190 yr B P to 1 y r B P , upland forests were dominated by o f oak , birch , and chestnut ( Castanea) Spruce persisted around the bog margin and in selected ravine and ridgetop habitats Extensive logging between 1880 and 1920 AD is documented in the plant-fossil record by an increase in disturbance- related taxa such as ragweed (Ambrosia type) and grasses and the decline in local populations of spruce , chestnut , and hemlock iv TABLE OF CONTENTS PAGE SECTION I INTRODUCTION • II ENVIRONMENTAL SETT ING • Site Description II I • • • METHODS • • 14 • 14 15 21 Field Sampling and Techniques Laboratory Techniqu es Statistical Techniques • IV RESULTS 23 Lithostratigraphy Chronolo gy Clay Mineralogy Pollen Accumu lation Rates Bio stratigraphy v 23 24 24 28 31 • 58 PALEOECOLOGICAL INTERPRETATION VI DISCU SSION AND CONCLUSIONS LIST OF REFERENCES 65 75 82 APPENDICES 83 A EXTRACTION TECHNIQUES B LOSS-ON- IGNITION DATA � 86 • C PALYNOMORPH CONCENTRATIONS AND TOTAL POLLEN ACCUMULATION RATES PAR 90 D PALYNOMORPH TABULATION 92 • E POLLEN ACCUMULATION RATES FOR SELECTED TAXA VITA • 105 109 F PLANT MACROFOSSIL TABULATION G VEGETATION RECONSTRUCTION DATA • • 112 115 v LIST OF FIGURES FIGURE PAGE Location map for relevant late-Quaternary sites in eastern United States Location map for Big Run Bog, West Virginia with topographic map of Big Run watershed, bog plant communities, and coring location • "7 Block diagram of Big Run Bo g 10 Radiocarbon age and accumulation rate 26 s Loss-on- ignition and clay mineralogy Percentage diagram for trees and shrubs 32 Percentage diagram for upland herbs, ferns, fern allies, and aquatic plants 34 Measurements of internal -cap diameters for Diploxylon Pinus pollen for selected stratigraphic levels 36 Measurements of grain diameters of Betula pollen grains for selected stratigraphic levels 38 10 Palynomorph accumulation rates diagram for selected taxa 40 11 Plant macrofossil diagram 42 12 Reconstructed forest composition based upon taxon calibration for major tree species • 29 • • • • 13 • X - ray diffractograms for 118 em and 140 em depth 44 70 vi I INTRODUCTIOI The extent to which changes in geomorphic processes influenced vegetation development during times o f major climatic changes, such as the transition from Pleistocene to Holocene, can be investigated using paleoeco lo gic techniques, particularly in montane regions such as the Appalachian Mountains of eastern North America (Watts, 1979 ; Spear, 1981 ; Shafer, 1984 ; Delco urt and Delcourt, 1986 ) Geomorphological features o f sorted, patterned ground, indicative of Pleistocene periglacial conditions, have been documented for the central Appalachians (Clark, 968 ; P�w�, 983) Full-glacial and late-glacial tundra has been reconstructed from radiocarbon-dated fossil pollen sequences at several sites (Fig ) located along the axis of the Appalachian Mountains (Maxwell and Davis, 1972 ; Watts, 1979 ; Spear, 981 ) Full-glacial tundra existed at least as far south as Cranberry Glades, West Virginia (38° 2'N, 80° 7'W, elevation 1029 m) (Watts, 979) At Buckle's Bog ( 39° 34'N, 79° 16'W, elevation 814 m), western Maryland, po llen assemblages dominated by sedges and herbs and with low po llen accumulation rates (PAR values between 1000 and 2000 grains · cm- 2•yr - ) persisted from 9, 000 yr B P until 12, 700 yr B P (Maxwell and Davis, 972) From these paleoecological data, i t may be inferred that although climatic conditions in the late-glacial interval may have been favorable for establishment of trees, disturbance-related co lluvial processes favored the persistence of open • POLEMONIUM o.o o.o o.o o.o 0.0 0.0 o.o o.o 0.0 o.o o.o o.o o.o o o.o o.o o.o o.o o.o o.o o.o 0.0 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o o.o 0,0 o.o 0.0 o.o 0.0 o.o o.o o.o 0.0 0.0 o.o o.o 0.0 0.0 POLYGONUM VIVIPARUM-BISTORTA TYPE o.o o.o 0.0 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o o o.o POTENTILLA TYPE 1.1 o.o o.o o.o o.o o.o o.o 1.1 0.0 o.o o.o o.o o.o o.o POLYGONUM AVICULARE TYPE o.o 0.0 o.o o.o 0.0 0.0 o.o o.o o.o o.o o.o o.o o.o PRUNELLA o.o o.o o.o TYPE o.o o.o o.o o.o o.o o.o o.o o.o s o.o o.o o.o 0.0 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 0.0 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o o.o o.o o o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o ,6 o.o 4.1 o.o 1.0 o.o o.o ,4 o.o 1.9 o.o SANGUISORBA CANADENSI S o.o 0.0 o.o o.o o.o o.o o.o 7.9 10,2 1.8 s o.o 10.2 o.o o.o SAXIFRAGA o.o o.o o.o o.o o.o o.o 0.0 o.o o.o 0.0 o.o o.o 0.0 o.o o.o o.o o.o o.o o.o o.o o.o o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 0.0 SILENE o.o o o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 0.0 o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 0.0 0.0 o.o o.o o.o STELLAR IA o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 101 • o.o TiiALICTRUM o.o 0.0 1.0 UMBELLIFERAE 0.0 0.0 0.0 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 5 XANTHIUM o.o o.o o.o o.o 0.0 0.0 0.0 o.o o.o o.o o.o o.o 0.0 o.o o.o o.o o.o 0.0 3 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 2.2 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o LYCOPODIUM ANNOTINUH o.o o.o o.o 0.0 1.0 o.o o.o o.o 0.0 0.0 0.0 1.5 o.o o.o o.o 0.0 0.0 2.2 EQUISETUM 1.6 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o LYCOPODIUM CLAVATUH 0.0 o.o o.o o.o o.o o.o LYCOPODIUM LUCIDULUM 5.0 6.4 5.8 2.0 3.0 0.0 o.o o.o o.o o.o 8.6 o.o o.o o.o o.o o.o o.o o.o o.o LYCOPODIUM OBSCURUM 0.0 o.o o.o o.o o.o o.o 1.5 o.o o.o o.o 1.5 o.o o.o o.o DENNSTAEDTIA o.o o.o o.o o.o o.o o.o o.o o.o 0.0 o.o o.o 0.0 0.0 0.0 o.o o.o o.o o.o 3 o o.o o.o 1 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o· o.o o.o o.o o.o o.o o.o o.o o.o 0.0 0.0 o.o o.o o.o 1.2 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 0.0 o.o o.o 0.0 0.0 0.0 o.o 0.0 0.0 o.o o.o o.o o.o o.o o.o o.o 0.0 o.o o.o o.o o.o o.o 0.0 o.o o.o o.o o.o o.o o.o o.o 7.0 4.0 0.0 8.5 1.8 8.6 1.3 0.0 2.0 o.o o.o 2.8 2.5 o.o o.o o.o 1.5 0.0 0.0 2.0 o.o o.o o.o o.o o.o o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 0.0 o.o o.o o 7.8 o.o o.o o.o 1.3 02 � LYCOPODIUM SELAGO TYPE o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o LYCOPODIUM UNDIFFERENTIATED 1.4 1.9 0.0 o.o 5 o.o 0.0 o.o 2.0 o.o 2.0 o.o o.o 3 o.o o.o o.o o.o o.o a o.o o.o 1.5 o.o o.o 0.0 o.o o.o MONOLETE SPORES UNDIFFERENTIATED o.o o.o 1.9 a 1.3 o.o o.o o.o o.o o.o o.o 1.9 o.o a o.o 1.7 1.1 0.0 a 1.2 OSMUNDA CINNAMOHEA 0.0 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o OSMUNDA REGALIS TYPE o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o PTERIDIUM 1.1 5 o.o 3.3 o.o o.o o.o o.o o.o o.o o.o o.o 1.7 2.3 o.o o.o o.o o.o 1.0 o.o 1.1 3.3 o.o o.o o.o o.o o.o o.o a UNKNOWNS o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 0.0 TOTAL POLLEN 435 373 39 375 541 587 794 AND SPORE UNIVERSE 42a o 442 401 400 , 435 44a o 393 467 548 722 725 356 395 3a3 356 365 392 409 395 395 404 490 5 515 447 520 623 794 576 690 671 483 03 • NYMPHAEA o.o o.o 0.0 o.o o.o o.o o.o o.o o.o 0.0 o.o o.o o.o o.o o.o o.o o.o o.o o.o 0.0 o.o o 0.0 0.0 0.0 o.o o.o o.o o.o o.o o.o 0.0 0.0 0.0 o.o o.o o.o o.o 0.0 o.o o.o o.o 0.0 o.o o.o o.o o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 0.0 o.o o.o o.o o.o o.o 1.1 o.o 1.1 o.o o.o o.o o.o o.o 3 o.o 1.6 o.o o.o 2.3 o.o o.o o.o o.o POLYGONUM HYDROPIPER TYPE o.o o.o o.o o.o 0.0 o.o o.o o.o o.o 0.0 o.o o.o POTAMOGETON FOLIOSUS TYPE 0.0 2.3 o.o o.o 1.3 o.o o.o o.o o.o o.o POTAMOGETON PECTINATUS TYPE o.o 1.8 1.8 o.o a o.o o.o o.o o.o 4 o.o o.o o.o 2 o.o o.o 1.6 9.9 2.8 3.5 6.7 1.0 8.7 2.9 o.o o.o 2.6 2.6 5.8 8.3 o.o 13.7 6.5 4.6 6.8 14 3.7 25 2.9 a.o 2.7 5.5 o.o 4.4 2.2 4.1 2.9 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 1.2 o.o o.o o.o o.o o.o 1.0 5 o.o 1.5 1.2 1.1 1.0 1.4 1.5 1.1 1.2 1.6 2.8 1.2 2.0 SPHAGNUM 2.7 6.7 25 TYPHA LATIFOLIA o.o o.o o.o 1.2 o.o o.o o.o INDETERMINABLE o.o 2.8 1.0 1.0 1.3 TOTAL POLLEN 448 423 391 551 636 805 & SPORE + AQUATICS + INDETERMINABLE 455 476 467 432 463 418.0 408 455 467 435 429 478 479 559 730 732 632 805 377 513 GRAINS 377 382 421 439 422 667 576 567 46 549 582 698 675 TOTAL 19014 EUCALYPTUS GRAINS 141 65 62 72 78 123 63 87 26 23 30 18 21 14 59 55 15 166 93 68 124 223 222 2 287 369 251 193 142 1418 12.0 20 18 94 137 04 APPENDIX E POLLEN ACCUMULATION RATES FOR SELECTED TAXA ========================= Pollen Accumulation Rates ========================= Age ( yr B P ) I Pinus Picea Larix Salix 59 512 12 17 19 14 11 29 21 26 45 23 204 280 349 66 23 107 212 258 412 387 195 543 252 216 265 244 304 303 109 54 119 63 69 448 516 41 787 77 60 77 44 45 103 71 202 81 272 221 277 248 256 320 340 258 586 184 150 581 594 574 908 563 1712 1611 144 54 144 127 74 508 649 0 0 0 0 0 0 0 0 0 0 0 29 0 12 26 24 4 27 31 11 79 14 12 10 10 18 12 0 81 19 18 17 12 48 96 66 109 16 15 0 0 2 0 0 35 58 10 23 0 67 137 41 49 305 151 112 166 80 116 25 2 472 12 14 13 52 15 26 05 39 93 58 50 58 55 92 83 24 47 181 458 160 30 73 543 1712 31 109 305 Abies Fraxinus Populus Quercus Betula Tsuga 709 6536 368 284 413 213 201 309 326 285 376 769 1 07 744 1803 800 1000 280 919 715 1 23 225 220 771 365 160 223 182 206 202 17 27 27 439 6614 221 211 397 89 244 232 372 352 654 1014 1825 21 64 2326 759 1081 2015 1873 181 197 461 300 81 93 64 60 22 787 81 69 75 1 10 22 472 18 15 21 11 13 31 52 35 78 140 58 91 12 55 33 25 13 19 31 32 24 31 27 32 0 17 27 80 89 11 31 29 79 305 478 146 1515 2243 314 210 757 956 645 2121 349 110 19 - o 0 0 0 0 0 472 472 6536 6614 2243 =================-========================================================================================== 50 500 000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 , 000 , 500 1 , 000 1 , 500 12 , 000 500 13 : ooo 13 , 500 13 , 750 14 000 14 : 5oo 15 000 15 : 500 000 16 : 5oo , 000 Maximum value a- 25 54 88 38 37 54 ========================= Pollen Accumulation Rates Age ( yr B P ) I Castanea ::::;:: ;;:;;;:: = : ===-�=-3:1=:;;:3;:::;==�� I lex type Ostrya/Carpinus 3150 0 21 51 46 26 11 � Alnus Ericaceae Gramineae Cyperaceae =================-========================================================================================== 150 500 1000 500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10 000 10 : 500 1 , 000 1 , 500 000 : 500 13 000 ' 500 13 : 750 14 , 000 , 500 15 , 000 500 16 : ooo 16 , 500 , 000 Maximum value "-J 1260 �n 84 55 101 121 86 124 104 jgl 664 �7 n� 485 303 621 405 233 50 71 13 10 13 0 0 1 � 1260 91 9� 87 91 58 34 32 315 11 29 14 13 23 15 45 93 524 443 379 0 145 79 206 303 252 443 349 223 245 466 405 466 998 154 78 523 505 170 48 0 0 0 0 16 40 1 27 58 194 423 549 873 225 275 362 24 107 99 124 80 97 5 27 22 3150 998 873 H 63 97 133 12 0 0 50 40 27 1102 60 69 117 29 50 37 88 52 157 15 11 10 11 0 16 47 0 12 32 157 17 13 44 23 78 93 116 35 175 10 100 349 184 49 242 443 233 163 75 243 361 893 37 25 12 0 0 0 0 0 0 0 95 31 11 72 41 54 78 25 44 69 47 24 283 217 380 517 971 856 840 1050 240 215 84 244 101 879 231 1102 878 1231 �2 83 00 18 34 l� ========================= Age ( yr B P ) sanguisorba Pollen Accumulation Rates ========================= Bidens type Artemisia Ambrosia type ================================================================================= 150 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10 000 10 : 5oo 11 000 11 : 500 12 000 12 : soo , 000 13 500 : 750 14 000 14 : 5oo 15 , 000 , 500 16 000 16 : 5oo 17 , 000 Maximum value co 0 0 0 0 0 0 23 42 13 11 23 19 70 29 79 18 0 16 53 60 16 31 52 1 1 23 78 55 50 75 107 169 343 155 309 42 2.28 45 57 6 20 40 35 47 29 12 0 67 50 24 21 10 23 16 12 72 6 4 452 343 79 0 0 o· 25 18 89 48 � 30 211 1102 39 51 21 24 24 13 31 11 52 58 39 70 � 58 19 37 50 18 21 19 g 10 14 1102 APPENDIX F PLANT MACROFOSSIL TABULATION Plant Macrofossil Tabulation * Radiocarbon Age ( thousands of yr B P) Species 17 16 15 14 13 13 1 1 ========================================================================================== Pinus cf strobus Picea needle fragments Picea seeds Picea sterigma Abies balsamea needle fragments Tsuga canadensis needle fragments Tsuga canadensis needle petioles Gramineae undifferentiated Carex lenticular type Carex comosa type Scirpus cyperinus type Scirpus validus type Scirpus cespitosus type Scirpus americanus type Cyperus undifferentiated Cornus canadensis Galium Potentilla cf palustris Vi tis Polygonum lapathifolium type Isoetes megaspores � � C) 11 12 1 14 1 Bryophytes Insect fragments 5 Unknowns * 19 Numbers of specimens per 60 cubic· em of sediment 5 5 4 5 Plant Macrofossil Tabulation * Radiocarbon Age ( thousands of yr B P) Species 12 11 10 87 5 5 3 =============================D============================================================ Pinus c f strobus Picea needle fragments Picea seeds Picea sterigma Abies bal samea needle fragments Tsuga canadensis needle fragments Tsuga canadensis needle petioles Gramineae undifferentiated Carex lenticular type Carex comosa type Scirpus cyperinus type Scirpus validus type Scirpus cespitosus type Scirpus americanus type Cyperus undifferentiated Cornus canadensis Galium Potentilla c f palustris Vi tis Polygonum lapathifolium type Is�e tes megaspores Unknowns * Bryophytes Insect fragments Numbers of specimens per 60 cubic em of sediment 1 33 39 39 1 APPENDIX G VEGETATION RECONSTRUCTION DATA ========================= VEGETATION RECONSTRUCTION ========================= Age ( yr B P ) I Abies Acer Betula Carya Fagus Fraxinus Juglans Larix Nyssa =================================================================================================== 9000 10 , 000 11 , 000 12 , 000 13 , 000 o.o 6.4 o.o o.o 7.3 o o 6.4 5.0 o.o 9.7 12 24 17 o 15.5 17 8.1 10 10 12 10 13 18 6.4 11 6.1 12 11 5.7 7.4 9.6 13 10 15.3 12.8 11 7.3 16 10 11 1.7 1.7 10 o.o 5.7 5.4 3.8 4.3 o.o o.o o.o 1.7 o.o 2.6 1.6 2.5 3.5 1.7 3.1 1.7 1.5 o.o o.o o.o 2.2 3.7 2.4 2.6 4.4 2.0 4.2 2.8 2.5 6.1 9.2 5.2 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 2.2 o.o 5.0 5.9 5.2 7.7 12 7.4 4.9 14 7.3 8.0 4.7 3.8 o.o Maximum value 24 18 16 10 3.5 9.2 2.2 14 1000 2000 3000 4000 5000 6000 7000 8000 w ========================= VEGETATION RECONSTRUCTION ========================= Age ( yr B P ) I Picea Populus Pinus Quercus Salix Tilia Tsuga Ulmus ===========================================================�=======-================ -== 7000 8000 9000 10 , 000 11 , 000 12 , 000 13 , 000 5.0 11.5 10 10 12 10 7.4 9.3 12 11 16 19 29 33 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 7.0 2.6 2.0 29 18 10 16 4.2 12.0 19.8 23 4.4 8.0 4.2 6.3 17 19 23 25 30 27 23 18 17 14 19 12 10 16 5.8 7.8 o.o o.o o.o o.o o.o o.o o.o o.o o.o 2.5 3.4 1.9 4.2 o.o 4.4 o.o 4.6 o.o 3.5 o.o 3.3 o.o o.o o.o 5.8 5.5 4.8 6.3 10.0 12 5.3 10 22 14 1.5 o.o o.o 1.6 3.2 1.5 1.7 o.o 0.0 2.1 2.1 2.2 2.8 Maximum value 33 29 30 3.4 4.6 22 3.2 1000 2000 3000 4000 5000 6000 1-' 1-' � VITA Peter Andrew Larabee was born in Schenectady , New York on March , 960 He attended Severna Park High School and graduated in June 1978 The following September he entered Saint Lawrence University , and in May 982 he received a Bachelor of Science degree with honors in Geology After a provisional course of study the following fall at University of Alaska , Fairbanks , he entered The Graduate School in Geological Sciences at the University of Tennessee , Knoxville in September 983 He was married to Elizabeth Morgan Hill in August 982 and became a father in February 1986 with the birth of Shannon Morgan 115 ... represents the abrupt eastern boundary of the Allegheny Mountain section The Big Run watershed is underlain by the U pper Connoquenessing sandstone and the Homewood sandstone of the Pottsville Group and. .. nearly flat -lying crest of Backbone Mountain suitable for the perching of water and the formation of the wetland ( Diehl and Behling, 982) The moss-covered surface of the bog slopes gently (... Major Professor We have read thi s thesis and recommend its acceptance: �-.11)� �2,� �&� Accepted for the Council: Vice Provost and Dean of The Graduate School LATE-QUATERNARY VEGETATIONAL AND GEOMORPHIC

Ngày đăng: 21/10/2022, 00:14

w