1. Trang chủ
  2. » Luận Văn - Báo Cáo

On solvability of a boundary value problem for singular integral equations

10 4 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 74,96 KB

Nội dung

Southeast Asian Bulletin of Mathematics (2002) 26: 235–244 Southeast Asian Bulletin of Mathematics : Springer-Verlag 2002 On Solvability of a Boundary Value Problem for Singular Integral Equations Nguyen Van Mau and Nguyen Tan Hoa Hanoi University of Science, Vietnam, 334 Nguyen Trai, Dong Da, Hanoi, Vietnam AMS Subject Classification: 47G05, 45GO5, 45E05 Abstract This paper deals with the solvability of boundary value problems for singular integral equations of the form (i)–(ii) By an algebraic method we reduce the problem (i)–(ii) to a system of linear algebraic equations which gives all solutions in a closed form Keywords: initial and co-initial operators, singular integral equations, boundary value problem Introduction The theory of general boundary value problem induced by right invertible operators were investigated by Przeworska-Rolewicz and has been developed by many other mathematicians (c.f [2], [4]) In this paper, we give an application of this theory to solve the following boundary value problem: ẵK n ỵ K n1 Kc ịjtị ẳ f tị; Fj K j jịtị ẳ jj tị; G0 f ÞðtÞ ¼ 0; j ¼ 0; ; n À 1; ðGj RjÀ1 R0 Þ f tị ẳ 0; jj tị A Ker K; iị if k > 0; j ¼ 1; ; n À if k < 0; ðiiÞ where Kc is an operator of multiplication by the function cðtÞ; Fj ; Gj ð j ¼ 0; ; n À 1Þ are initial and co-initial operators, respectively, and btị Kjịtị ẳ atịjtị ỵ pi jtị dt; t G Àt k ¼ Ind K: Preliminaries We recall some notations and results which are used in the sequel (see [2], [4]) 236 Ng.V Mau and Ng.T Hoa Let G be a simple regular closed arc in complex plane and let X ẳ H m Gị < m < 1ị Denote by Dỵ the domain bounded by G (assume that A Dỵ ) and by D -its complement including the point at infinity The set of all linear operators with domains and ranges contained in X will be denoted by LðX Þ Write L ðX Þ :¼ fA A LðX Þ : dom A ¼ X g Let RðX Þ be the set of all right invertible operators belonging to LðX Þ For D A RðX Þ, we denote by RD the set of all its right inverses An operator F A LðX Þ is said to be an initial operator for an operator D A RðX Þ corresponding to a right inverse R of D if F ẳ F; F dom Dị ẳ Ker D; FR ¼ 0: Denote by FD the set of all initial operators for D A RðX Þ The following fact is well-known: F A LðX Þ is an initial operator for D A RðX Þ corresponding to R A RD if and only if F ¼ I À RD on dom D Let LðX Þ be the set of all left invertible operators belonging to L ðX Þ For V A LðX Þ, we denote by LV the set of all its left inverser If V A LðX Þ and L A LV then the operator G :¼ I À VL is called the co-initial operators for V corresponding to L A LV Denote by GV the set of all co-initial operators for V A LðX Þ Lemma (see [2]) Let A; B A LðX Þ, Im A H dom B, Im B H dom A Then equation I ABịx ẳ y has solutions if and only if I BAịu ẳ By does and there is one-to-one correspondence between the two sets of solutions, given by u ¼ Bx $ x ¼ y ỵ Au: The Results Let Kjịtị :ẳ atịjtị ỵ bðtÞ pi ð jðtÞ dt; t G Àt where aðtÞ; bðtÞ A X , a ðtÞ À b tị ẳ 1, 0 k ẳ Ind K Denote btịZtị jtị dt; R0 jịtị :ẳ atịjtị pi Ztịt tị G where Ztị ẳ e Gtị tk=2 ;   ln tk atịbtị atịỵbtị dt: Gtị ẳ tt 2pi G On Solvability of a Boundary Value Problem for Singular Integral Equations 237 It is known that (see [2], [4]) i) If k > then K is right invertible and RK ¼ fR ¼ R0 þ ðI À R0 KÞT : T A L ðX Þg: Let F0 ; ; FnÀ1 be given initial operators for K corresponding to R0 ; ; RnÀ1 A RK , where Rj ẳ R0 ỵ I R0 KịTj j ẳ 1; ; n À 1Þ; T1 ; ; TnÀ1 A L ðX Þ: ð1Þ ii) If k < then K is left inverbible and LK ẳ fR ẳ R0 ỵ TI KR0 ị : T A LX ị; dom T ẳ ðI À KR0 ÞX g: In this case, let G0 ; ; GnÀ1 be given co-initial operators for K corresponding to R0 ; ; Rn1 A LK , where Rj ẳ R0 ỵ Tj I KR0 ị j ẳ 1; ; n À 1Þ; T1 ; ; TnÀ1 A LðX Þ: ð2Þ Lemma If k > 0, then F0 jịtị ẳ k1 X uk jịck tị on X ; kẳ0 where ck tị ẳ btịZtịt k ðk ¼ 0; ; k À 1ị and uk jị k ẳ 0; ; k À 1Þ are linear functionals which are defined by uk jị ẳ 2pi t k1k jtị À À G ðtÞ pi G e ð ! jðt1 Þ dt1 dt; G t1 À t ð where GÀ ðtÞ is a boundary value of the function GðzÞ in D Proof We have F0 jịtị ẳ ẵI R0 Kịjtị atịbtị jtị dt ẳ jtị a ðtÞjðtÞ À pi GtÀt ! ð ð bðtÞZðtÞ bðtÞ jt1 ị atịjtị ỵ dt1 dt ỵ pi pi G t1 À t G ZðtÞðt À tÞ ð aðtÞbðtÞ jðtÞ dt ẳ jtị a tịjtị pi Gtt ! jỵ tị dt j tị dt ỵ btịZtị ; pi G X ỵ tịt À tÞ pi G X À ðtÞðt À tÞ 3ị 238 Ng.V Mau and Ng.T Hoa ỵ where jỵ tị ẳ 12 ẵI ỵ Sịjtị, j tị ẳ 12 ẵI ỵ Sịjtị, X ỵ tị ẳ e G tị , X tị ẳ tk e G tị (Gỵ tị; G tị are boundary values of the function Gzị in Dỵ ; D , respectively) On the other hand pi jỵ tị dt j tị dt ỵ pi G X tịt tị G X tịt tị jỵ tị j tịt k dt ẳ ỵ X tị pi G e G ðtÞ ðt À tÞ ð kÀ1 k X jỵ tị t k j tị dt t t k1k j tị ẳ ỵ dt À X ðtÞ pi G e G ðtÞ ðt À tị kẳ0 pi G e G tị ẳ ẳ k1 k jỵ tị j tị X t ỵ ỵ X tị X tị kẳ0 pi btị atị jtị ỵ Ztị Ztịpi t k1k j tị dt e G ðtÞ G ð kÀ1 k X jðtÞ t dt À pi GtÀt k¼0 ð ð t kÀ1Àk jÀ ðtÞ dt: À e G ðtÞ G Hence ! ð ð kÀ1 X bðtÞZðtÞt k t kÀ1Àk jðt1 Þ F0 jịtị ẳ dt1 dt: jtị G tị pi G t1 À t 2pi G e k¼0 The lemma is proved By similar arguments, we obtain the following result: Lemma If k < 0, then ðG0 jÞðtÞ ¼ jkjÀ1 X vk ðjÞck ðtÞ on X ; k¼0 where ck tị ẳ btịt k k ẳ 0; ; jkj À 1Þ and vk ðjÞ ðk ¼ 0; jkj À 1Þ are linear functionals defined by vk jị ẳ 2pi G tjkjÀ1Àk e G À ðtÞ jðtÞ À ZðtÞ pi ð ! jðt1 Þ dt1 dt G Zðt1 Þðt1 À tÞ where GÀ ðtÞ is a boundary value of the function GðzÞ in DÀ In the sequel, for every function ctị A X , we write Kc jịtị ẳ cðtÞjðtÞ: ð4Þ On Solvability of a Boundary Value Problem for Singular Integral Equations 239 Consider singular integral equation of the form ẵK n ỵ K n1 Kc ịjtị ẳ f ðtÞ; ð5Þ with mixed boundary conditions iÞ ðFj K j jịtị ẳ jj tị; G0 f ịtị ẳ 0; iiị jj tị A Ker K; j ẳ 0; ; n À ðGj R0 Rj1 f ịtị ẳ 0; if k > 0; j ¼ 1; ; n À if k < 0; ð6Þ where f ðtÞ; cðtÞ A X ; Fj ; Gj ð j ¼ 0; ; n À 1Þ are defined by (1) and (2), respectively, < n A N Theorem Suppose that ỵ ctịatị G ctịbtị 0 for all t A G Then every solution of the problem (5)–(6) can be found in a closed form Proof Let k > 0, we have K A RðX Þ Hence, the equation (5) is equivalent to the equation jtị ẳ R0 Rn1 K n1 Kc jịtị ỵ R0 Rn1 f ịtị ỵ R0 Rn2 zn1 ịtị ỵ ỵ R0 z1 ịtị ỵ z0 tị; where z0 tị; ; znÀ1 ðtÞ A Ker K are arbitrary Thus, the problem (5)(6) is equivalent to the equation jtị ẳ R0 Rn1 K n1 Kc jịtị ỵ R0 Rn1 f ịtị ỵ R0 Rn2 jn1 ịtị ỵ ỵ R0 j1 ịtị ỵ j0 tị; i.e ẵI ỵ R0 Rn1 K n1 Kc ịjtị ẳ f1 tị; 7ị where f1 tị ẳ R0 Rn1 f ịtị ỵ R0 Rn2 jn1 ịtị ỵ ỵ R0 j1 ịtị ỵ j0 ðtÞ: By the Taylor-Gontcharov formula for right invertible operators (see [4]), (7) is iquivalent to the equation 20 4@I þ R0 I À F1 À nÀ1 X k¼2 ! R1 RkÀ1 Fk K kÀ1 Kc Aj5tị ẳ f1 tị: 8ị By lemma 1, in order to solve the equation (8) it is enough to solve the equation 240 Ng.V Mau and Ng.T Hoa " I ỵ Kc R0 F1 Kc R0 n1 X ! # R1 RkÀ1 Fk K k1 Kc R0 c tị ẳ gtị; kẳ2 where gtị ¼ " nÀ1 X I À F1 À R1 RkÀ1 Fk K k¼2 kÀ1 ! # Kc f1 ðtÞ: Rewrite this equation in the form " I þ Kc R0 À F1 Kc R0 À nÀ1 X # ! R1 RkÀ1 Fk K kÀ1 Kc R0 KZ f tị ẳ gtị; kẳ2 9ị where ftị ẳ ctị=Ztị From lemma 2, we have Fk K k1 Kc R0 KZ fịtị ẳ k1 X ujk fịcj tị; k ẳ 1; ; n 1; jẳ0 where ujk fị ẳ uj ẵI Tk KÞK kÀ1 Kc R0 KZ fŠ; uj ðjÞ; cj ðtÞ ð j ¼ 0; ; k À 1Þ are defined by (3) Hence, (9) is of the form ðMfÞðtÞ À nÀ1 X kÀ1 X ujk ðfÞcjk ðtÞ ¼ gðtÞ; ð10Þ k¼1 j¼0 where cj1 ðtÞ :¼ cj tị, cjk tị ẳ R1 Rk1 cj ÞðtÞ ðk ¼ 2; ; n À 1ị, j ẳ 0; ; k and ctịbtịZtị Mfịtị :ẳ ẵ1 ỵ ctịatịZtịftị pi ð fðtÞ dt: GtÀt ð11Þ Write this equation in the form Mfịtị q X u~k fịc~k tị ẳ gtị; 12ị kẳ1 where q ẳ kn 1ị, f~ u1 ðfÞ; ; u~q ðfÞg is a permutation of fujk fị; j ẳ 0; k À 1; k ¼ 1; ; n À 1g and fc~1 ðtÞ; ; c~q ðtÞg is obtained by this permutation from the set of functions fcjk tị; j ẳ 0; ; k À 1; k ¼ 1; ; n À 1g On Solvability of a Boundary Value Problem for Singular Integral Equations 241 Denote where cðtÞbðtÞZ1 ðtÞ Ð ftị ẵ1 ỵ atịctịftị ỵ G Z1 tịttị dt pi Nfịtị :ẳ ; ỵ atịctị c ðtÞb ðtÞ ZðtÞ Ã 1=2 ÂÀ Á2 Z1 tị ẳ Ztịe G1 tị tk1 =2 ỵ aðtÞcðtÞ À b ðtÞc ðtÞ ; Á À k ln t Gtị G1 tị ẳ dt; 2pi G tt Gtị ẳ ỵ atịctị ỵ btịctị ; ỵ atịctị btịctị k1 ẳ Ind Gtị: If k1 ẳ 0, then M is invertible and M À1 ¼ N Hence, the equation (12) is equivalent to the equation fðtÞ À q X u~k ðfÞðN c~k ÞðtÞ ¼ ðNgÞðtÞ: ð13Þ k¼1 Without loss of generality, we can assume that fN c~k ịtịgkẳ1; q is a linearly independent system Then every solution of (13) can be found in a closed form by means of the system of linear algebraic equations u~j ðfÞ À q X ajk u~k fị ẳ u~k Ngị; j ẳ 0; ; q; kẳ1 where ajk ẳ u~j N c~k ị; k; j ¼ 1; ; q If k1 > 0, then M is right invertible and N is a right inverse of M Hence, the equation (12) is equivalent to the equation fðtÞ À q X u~k fịN c~k ịtị ẳ Ngịtị ỵ ytị; kẳ1 where ytị A Ker M is arbitrary We now can solve this equation by the same method as for the equation (13), i.e every its solution can be found in a closed form If k1 < 0, then M is left invertible and N is a left inverse of M Hence, the equation (12) is equivalent to the system q X > > > ftị u~k fịN c~k ịtị ẳ Ngịtị; > > > kẳ1 < q P > > u~k fịc~k tị gtị ỵ > > > kẳ1 > : t nÀ1 dt ¼ 0; n ¼ 1; ; jk1 j; Z1 ðtÞ G 242 Ng.V Mau and Ng.T Hoa i.e q X > > > ftị u~k fịN c~k ịtị ẳ Ngịtị; > > < k¼1 q > X > > > bnk u~k fị ẳ fn ; > : 14ị n ¼ 1; ; jk1 j; k¼1 where fn ẳ gtịt n1 dt ; Z1 tị G bnk ẳ ~ ck tịt n1 dt: Z1 ðtÞ G Without loss of generality, we can assume that fN c~k ịtịgkẳ1; q is a linearly independent system Every solution of (14) can be found in a closed form by means of the system of linear algebraic equations q X > > > ~ u ajk u~k ðfÞ ¼ u~j ðNgÞ; j ¼ 1; ; q; fị > j > < kẳ1 q > X > > > bnk u~k fị ẳ fn ; > : n ¼ 1; ; jk1 j; kẳ1 where akj ẳ u~k N c~j ị, k; j ¼ 1; ; q Thus, every solution of the equation (12) can be found in a closed form Due to the result of Lemma 1, every solution of the problem (5)–(6) is defined by the formula jtị ẳ R0 KZ fịtị ỵ f1 tị; where ftị is a solution of the equation (12), i.e every solution of the problem (5)– (6) can be found in a closed form Let k < 0, we have K A LðX Þ The Taylor-Gontcharov formula for left invertible operators (see [4]) and (6) together imply n ½ðI À K RnÀ1 R0 ị f tị ẳ G0 f ịtị ỵ " n1 X k ! # K Gk Rk1 R0 f tị ẳ 0; kẳ1 i.e f tị ẳ ẵK n Rn1 R0 Þ f ŠðtÞ: Hence, the problem (5)–(6) is equivalent to the equation ẵK n ỵ K n1 Kc ịjtị ¼ ðK n RnÀ1 R0 f ÞðtÞ; On Solvability of a Boundary Value Problem for Singular Integral Equations 243 i.e ẵK ỵ Kc ịjtị ẳ KRn1 R0 f ÞðtÞ: ð15Þ If jðtÞ is a solution of (15) then G0 Kc jịtị ẳ G0 KRn1 R0 f ịtị G0 Kjịtị ẳ 0; Thus, (15) is equivalent to the system & ½ðI ỵ R0 Kc ịjtị ẳ f2 tị; G0 Kc jịtị ¼ 0; ð16Þ where f2 ðtÞ ¼ ðRnÀ1 R0 f ÞðtÞ From Lemma 3, ðG0 Kc jÞðtÞ ¼ if and only if vk ðKc jÞ ¼ 0; k ¼ 0; ; jkj À 1; where vk jị k ẳ 0; ; jkj À 1Þ are defined by (4) Hence, the system (16) is equivalent to the system & ẵI ỵ R0 Kc ịjtị ẳ f2 tị; vk Kc jị ẳ 0; k ¼ 0; ; jkj À 1: Consider the system of equations & ẵI ỵ Kc R0 ịctị ẳ Kc f2 ịtị; vk cị ẳ 0; k ¼ 0; ; jkj À 1: ð17Þ It is easy to check that the system (16) has solutions if and only if the system (17) does Moreover, if jðtÞ is a solution of (16) then cðtÞ ¼ cðtÞjðtÞ is a solution of (17) Conversely, if cðtÞ is a solution of (17) then jtị ẳ btịctị ỵ btịZtị é ctị G Ztịttị dt pi ỵ f2 tị ỵ ctịatị ỵ ctịbtị 18ị is a solution of (16) Hence, in order to solve the system (16), it is enough to solve the system (17) Rewrite (17) in the form & Mfịtị ẳ Kc f2 ịtị; v~k fị ¼ 0; k ¼ 0; ; jkj 1: where ftị ẳ ctị=Ztị, v~k fị ẳ vk ðKZ fÞ and M is defined by (11) ð19Þ 244 Ng.V Mau and Ng.T Hoa By the same method as for the equation (12), every solution of this system can be found in a closed form So every solution of the problem (5)(6) is defined by the formula jtị ẳ btịZtịftị ỵ btịZtị é ftị G ttị dt pi þ cðtÞaðtÞ þ cðtÞbðtÞ þ f2 ðtÞ ; where fðtÞ is a solution of the system (19), i.e every solution of the problem (5)– (6) can be found in a closed form The theorem is proved References Gakhov, F.D.: Boundary value problems, Oxford, 1966 (3rd Russian complemented and corrected edition, Moscow, 1977) Mau, Ng.V.: Boundary value problems and controllability of linear system with right invertible operators, Warszawa, 1992 Mau, Ng.V.: Generalized algebraic elements and linear singular integral equations with transformed arguments, WPW, Warszawa, 1989 Przeworska-Rolewicz, D.: Algebraic Analysis, PWN and Reidel, Warszawa-Dordrecht, 1988 Przeworska-Rolewicz, D.: Equations with transformed argument, An algebraic approach, Amsterdam-Warszawa, 1973 ... sequel, for every function cðtÞ A X , we write Kc jịtị ẳ ctịjtị: 4ị On Solvability of a Boundary Value Problem for Singular Integral Equations 239 Consider singular integral equation of the form... WPW, Warszawa, 1989 Przeworska-Rolewicz, D.: Algebraic Analysis, PWN and Reidel, Warszawa-Dordrecht, 1988 Przeworska-Rolewicz, D.: Equations with transformed argument, An algebraic approach, Amsterdam-Warszawa,... problems and controllability of linear system with right invertible operators, Warszawa, 1992 Mau, Ng.V.: Generalized algebraic elements and linear singular integral equations with transformed arguments,

Ngày đăng: 19/10/2022, 18:31

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN