1. Trang chủ
  2. » Ngoại Ngữ

Modeling Instruction in Chemistry I

9 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 9
Dung lượng 118,5 KB

Nội dung

CHM 594/480: Modeling Instruction in Chemistry I Held each June & in alternate fall semesters (2019, 2021) at Arizona State University in Tempe Instructor: Mitch Sweet Email: mitchsweet@cox.net Hours in June: 8:00 – 3:30 pm M-Th, 8:00 – 12:00 F (Hours in fall semester: 5:30 – 7:30 pm TTh) Description: This workshop addresses core concepts (first semester +) in chemistry from a model-centered perspective A second workshop in alternating summers addresses nd semester and advanced chemistry Clientele: The course is valuable for inservice and preservice chemistry and physics teachers; chemistry students who intend to teach college or high school; teachers who are preparing to take the AZ chemistry certification test Useful for biology, earth science, and environmental science teachers, since chemistry is a foundation of these courses Mimimum content prerequisite: Grade of 'B' or better in the first semester of a college chemistry course for science majors (e.g., CHM 150 or CHM 151 at MCCCD), or instructor consent Course objectives: The emphasis is on plans and techniques for helping students to learn concepts in chemistry from the perspective of systematically developed particle models for matter Instructional strategies include a coherent approach to the role of energy in physical and chemical change Course plan: Participants are introduced to principles of Modeling Instruction, and then learn how organizing a chemistry course around a series of particle models of increasing complexity can make the experience more coherent to students They are given tested instructional materials for the nine units that we consider the core of a 1st year chemistry course, and they work through activities alternately in roles of student or teacher They practice Socratic questioning techniques needed to promote meaningful classroom discourse Course content (Major topics in bold Suggested topics below each major topic.) I Particulate structure of matter Macroscopic vs microscopic descriptions compounds, elements and mixtures Explanation of (observed) macroscopic properties using microscopic models Systematic explanation of details with models of increasing complexity Macroscopic evidence for microscopic structure (ionic vs molecular substances) II Energy and Kinetic Molecular Theory Visualizable models (macroscopic analogs) for solids, liquids and gases Energy storage modes and transfer mechanisms Role of energy in phase change Distinction between heat and temperature III Stoichiometry The mole concept – relating how much to how many Using equations to represent chemical change Non-algorithmic approaches to chemical calculations IV Energy and chemical change Attractions vs chemical bonds Chemical energy, thermal energy and ∆H CHM 594/480 Course syllabus, expectations and schedule V Naïve conceptions about matter and interactions Expectations & Grading Attendance: You are expected to attend all days of this course If you miss two days (>1/10 of the contact hours), your maximum grade will be a B; if three, you may earn no higher than a C (exception for jury duty) Please be on time and ready to go! If you must miss a class or will be late, please email the instructors as soon as you can Materials: • You will need a set of the instructional materials for the course The chemistry I modeling manual includes Teacher Notes, sample worksheets, quizzes and tests, and labs You will also need a x 12” quad-ruled lab notebook This size will allow you to easily paste in data you collect and graphs you produce from the labs you perform during the workshop, as well as your reflections on the activities and readings assigned during the workshop A free textbook is sometimes used; available in pdf online • June workshops get local corporate funding; hence for them, these materials plus a 3-ring binder and 10 divider tabs are provided for free for Arizona participants; they will be distributed on the first day Participants from out of state or from other countries need to pay Jane Jackson for the chemistry I modeling manual, and buy a quad-ruled lab notebook and 2”wide 3-ring binder & 10 dividers on their own Please buy materials before the first day of class if possible Student Learning Outcomes: At successful course completion, students will have • improved their instructional pedagogy by incorporating the modeling cycle, inquiry methods, critical and creative thinking, cooperative learning, and effective use of classroom technology, • deepened their understanding of content in 1st semester chemistry • experienced and practiced instructional strategies of model-centered discourse, Socratic questioning/whiteboarding, use of standardized evaluation instruments, coherent content organization, • strengthened coordination between mathematics and chemistry, • increased their skill in all eight scientific practices recommended by the National Research Council in “A Framework for K-12 Science Education.” Models and theories are the purpose and the outcomes of scientific practices They are the tools for engineering design and problem solving Thus, modeling guides all other practices Listing of assignments: This course meets for ~90 hours (studio format) in June (60 hours in fall) In June you are required to at least 45 hours of work outside of class (including reading, worksheets, lab reports, and writing (In fall you are required to at least 75 hours of work outside of class ) Assignments are listed in the homework document; their links to the Student Learning Outcomes are evident Course Grade: To be considered for a letter grade of “B”, you will be expected to the following (in June; modified in fall semester): (See the homework document): • You will be assigned several readings from chemistry education research For each of these you will be expected to write a one-page reaction (not a summary!) in which you offer your views about the ideas discussed in the reading assignment We will discuss these in class the next day (40%) • For each day of class, you are expected to write a minimum one page reflection (not a summary of the day’s activities!) about the overall content of the unit - Teacher notes, labs, worksheets, etc.- and how it is different from your current teaching practice, or how it is different from the way you were taught (60%) CHM 594/480 Course syllabus, expectations and schedule Reactions and reflections are due each Friday (in the June workshop) and should be submitted electronically If the work is consistently incomplete or not satisfactory a “C” or lower grade can be given In order to be considered for a letter grade of “A”, you will have to complete three additional assignments details of which will be elaborated on during the first few days of the course Also refer to the homework document These will be due on or before the last course day One of the three assignments is a minimum 2-page typed paper describing how Modeling Instruction differs from your current practice and what changes you plan to incorporate, or the issues with which you will have to deal in order to implement the Modeling Method in your classroom Participants taking the course for non-credit are earning CEU’s along with clock hours towards recertification ASU expects you to complete and submit all assignments at a satisfactory level in order to receive the CEU’s, even though you are not receiving a grade Arizona Board of Regents and ASU policies: • Each student is expected to work a minimum of 45 hours per semester hour of credit • Pass-fail is not an option for graduate courses https://students.asu.edu/grades-grading-policies • “B” grade means average; 3.0 GPA is requirement for MNS & other graduate degrees • Incomplete: only for special circumstances Must finish course within year, or it becomes “E” • An instructor may drop a student for non-attendance during the first two class days • An instructor may withdraw a student with a mark of "W" or a grade of "E" only in cases of disruptive classroom behavior Academic dishonesty policy: Academic honesty is expected of all students in all examinations, papers, laboratory work, academic transactions and records The possible sanctions include, but are not limited to, appropriate grade penalties, course failure (indicated on the transcript as a grade of E), course failure due to academic dishonesty (indicated on the transcript as a grade of XE), loss of registration privileges, disqualification and dismissal For more information, see http://provost.asu.edu/academicintegrity Disability policy: Qualified students with disabilities who require disability accommodations in this course are encouraged to make their requests to the instructor on the first class day or before Note: Prior to receiving disability accommodations, verification of eligibility from the Disability Resource Center (DRC) is required Disability information is confidential Suggested resources and readings (prior to the workshop): Modeling website at ASU: http://modeling.asu.edu Many articles are available on one of the pages: http://modeling.asu.edu/modeling/weblinks.html Modeling Instruction: An Effective Model for Science Education, J Jackson, L Dukerich, D Hestenes, Science Educator, Spring 2008; http://modeling.asu.edu/modeling/ModInstrArticle_NSELAspr08.pdf or http://www.nsela.org/images/stories/scienceeducator/17article7.pdf Cognitive Resources for Understanding Energy, Gregg Swackhamer Pre-publication (2003) http://modeling.asu.edu/CognitiveResources-Energy.pdf Modeling instruction article by a physics teacher: http://modeling.asu.edu/modeling/DB_AAPT_talk.html CHM 594/480 Course syllabus, expectations and schedule Any of the CHEM-Study high school curricula, e.g Chemistry; J Dudley Herron, David Frank, et al, D.C Heath 1993 ISBN 0-669-20367-X Chemistry: Experimental Foundations (3rd ed) Robert W Parry, Herb Bassow, Phyliss Merrill, and Robert L Tellefsen Prentice Hall, 1982 ISBN 0-13-129254-4 Workshop readings (link to articles provided during class) Great Ideas of Chemistry Ronald Gillespie J Chem Ed 74 (7) July 1997 Wherefore a Science of Teaching?, David Hestenes The Physics Teacher, April 1979 Testing for Conceptual Understanding in General Chemistry Craig W Bowen and Diane M Bunce The Chemical Educator, Volume Issue (1997), S1430-4171(97)02118-3 http://chemeducator.org/bibs/0002002/00020118.htm [Abstract only] Improving Teaching and Learning through Chemistry Education Research: A Look to the Future Dorothy Gabel J Chem Ed 76 (4) April 1999 Applying Modeling Instruction to High School Chemistry To Improve Students’ Conceptual Understanding, Larry Dukerich J Chem Ed 92 (8) August 2105 Secondary Students’ Mental Models of Atoms and Molecules: Implications for Teaching Chemistry Allan G Harrison and David F Treagust, Science Education 80(5) (1996) Beyond Appearances: Students’ misconceptions about basic chemical ideas A report prepared for the Royal Society of Chemistry, by Vanessa Barker Kind Online in pdf at http://www.rsc.org/learnchemistry/resource/download/res00002202/cmp00007478/pdf Exothermic Bond Breaking: A Persistent Misconception, W Galley, J Chem Ed 81 (4) April 2004 Supplemental readings Modeling Methodology for Physics Teachers, David Hestenes (1996) Online in pdf at http://modeling.asu.edu/R&E/Research.html Download these documents at http://modeling.asu.edu/Projects-Resources.html * Whiteboarding: a learning process, by Don Yost (2 page article, 2003) * Question Their Answers, by Brenda Royce (2-page article, The Physics Teacher 2004) * Managing Discourse during Class Discussions, by Larry Dukerich & Brenda Royce * Chemistry lab supplies list * Chinn & Brewer: Anomalous Data (research summary) * Daniel Schwartz & John Bransford: A Time for Telling (research summary) Socratic Questioning Strategies: download at http://modeling.asu.edu/listserv1.html Modeling Implementation rubric http://modelinginstruction.org/forums/topic/modeling-implementationrubric/ Eureka videos #16 to 21: solids, liquids, evaporation and condensation; expansion and contraction, measuring temperature, temperature & 'thermal energy' (Visit http://modeling.asu.edu/weblinks.html in the section called ‘flipped classroom’) Video clips from Ring of Truth: video #2: Change, and video #5: Atoms https://www.youtube.com/watch? v=WQ3mjb9BSaU Paul Andersen of Bozeman Science explains What is Modeling Instruction? CHM 594/480 Course syllabus, expectations and schedule https://www.youtube.com/watch?v=9jjjR6f9 g Derek Muller's 4-minute videos on matter and energy, that include naïve conceptions: weblinks are at http://modeling.asu.edu/modeling/DerekMullerVideos.htm Lindsey, Beth; Paula Heron & Peter Shaffer: Student understanding of energy: Difficulties related to systems (research summary at http://modeling.asu.edu/Projects-Resources.html ) DAILY ITINERARY in June Week 1: Overview, Introduction and Rationale Simple Particle Model; Interactive Particle Model and Energy Intros, course expectations, housekeeping issues, teacher mode vs student mode, Modeling Chemistry talk; M AMTA paperwork Teachers take ABCC pretest Unit 1: Matter – 1st demo; overview of Mass and Change-sample data, discuss particle representations What is the ‘stuff’ like at its simplest level? U1 ws1; Ring of Truth clip on Conservation of Mass Measurement of volume lab (intro to Logger Pro; interpret slope as conversion factor) Measurement, precision and accuracy discussion, ws Liter grad cylinder vs 1000 cm3 box demo Mass-volume lab: Pre-lab; Data; Analysis, Post-lab discussion Density as a conversion factor – non-algorithmic treatment T W Th HW – read Gillespie: “Great Ideas of Chemistry”; journal reaction; read Hestenes: “Wherefore a science of teaching?” Discussion of Gillespie and Hestenes articles ws and 4; WB selected problems Density of a gas lab - representations of particles to account for density Thickness of a thin-layer lab; post-lab discussion Ring of Truth video clips: Gold leaf and thickness of oil slick, size of a particle Mention web-site activity (ws 5)- The size of things- and other extras in Unit Discuss Unit test (review-comments on test) HW – read Unit Teacher Notes, reflect on overall design of unit, take unit test Unit 2: Energy & States of Matter-1: Diffusion demos (perfume and hot/cold water); discussion and model development; storyboards; Show student storyboards - how they reveal naïve beliefs States of matter – particle representations – Eureka videos 1-3 Thermometer demo; Eureka videos 4-5; ws1 Intro to pressure – relate to particle behavior – WB how to drink with a straw, pressure demos, websites ws Manometers Use of Labquest and Logger Pro review Gas behavior lab(s)- PVTn: P vs V, P vs n, P vs T HW – Read Wenning: “Whiteboarding & Socratic Dialogues” and write a reaction, review other WBing docs Discuss WBing articles Post-lab discussion; WB particle models for each experiment, discussion of KMT, theory vs law Rationale for proportional reasoning over equations for gas behavior ws and WB selected problems Discussion of PVTn lab and low tech options; Discuss Unit Test Unit 3: Energy & States of Matter-2 Icy Hot lab Post-lab discussion and WB, treatment of energy storage (accounts) Energy concept – resolving chemistry and physics representations CHM 594/480 Course syllabus, expectations and schedule F HW – daily class reflection HW – daily reflections and reading reactions due by midnight; read Energy and KMT reading; work on A assignments CHM 594/480 Course syllabus, expectations and schedule Week Overview: Interactive Particle Model and Energy Bonded Particle: Classification; Moles; Reactions M The story so far…Rationale for a unified energy concept – PowerPoint on Energy (refer Discussion of energy reading; reference PowerPoint on how to energy bar charts Qualitative treatment of energy; ws & 2; WB discussion Lauric acid lab and discussion of cooling curves Eureka video 6, Quantitative treatment of energy and heat capacity, ws & 4; WB selected problems Unit 3: discuss review and test T to it) HW: Read Gabel: “Improving Teaching and Learning…” and write a reaction; daily reflection Discuss Gabel article Unit 4: Describing substances Pure vs Mixture (particle representations and separation techniques) Simple vs Compound particles: Dalton atoms and video of Fe, S and FeS; electrolysis of water, Ring of Truth video clip on Electrolysis More discussion on element, compounds and mixtures- particle diagrams Avogadro’s Hypothesis- CHEM Study video on Gases and How They Combine; discussion of ws (Where is Avogadro in 1st year chemistry texts?) Research project- Dalton’s Playhouse website Do ws together and discuss its objectives; look at Unit review and test W Th HW: daily reflection, read Dukerich “Applying Modeling Instruction…” J Chem Ed 2015 Unit 5: Counting and Moles Demo with garbage bag Counting by massing – Relative Mass Activity The mole concept; count-mass conversion factors ws : together and discuss its objectives Empirical Formula Lab, begin reaction HW: read Larry’s synopsis of the Barker paper: “Beyond Appearances…” and write a reaction, work on A assignments Discuss reading More on size of a mole concept; samples of molar masses Molar conversions, ws2 and WB Finish lab, analyze data, board meeting to compare results Molecular formulas and % composition; ws and WB Discuss Unit review and test Unit 6: Particles w/Internal Structure Sticky Tape activity, WB results Post lab discussion- particle diagrams for tapes, paper/foil; develop Thomson model of atom PHET sims, cathode ray tube demo, etc Show clip from CHEM Study Chemical Families video, show a simple electrical circuit to test materials for cond HW: daily reflection CHM 594/480 Course syllabus, expectations and schedule F HW – daily reflections and reading reactions due at midnight, read Galley: “Exothermic Bond Breaking” and write a reaction, work on A assignments Week BPM: Reactions, Stoichiometry Units 10/11; Wrap Up Review of “Exothermic Bond Breaking…” M Conductivity of solutions demo- Model that accounts for Ionic vs molecular Copper (II) chloride electrolysis demo and discussion of e- transfer, existence of ions Patterns in periodic table, ws1; discussion of PT issues in teaching modeling vs traditional (elements, ion charges, e- config, etc.) Mercury software demonstration, Mercury ws and ws Discussion of of ionic & molecular compound properties, show models, ion charts, prefix rules, etc (skip ws and right now- ws and WB) Discuss Unit review and test Unit 7: Representing Chemical Change Nail lab -part only- now and let sit overnight Rearranging atoms activity, post activity discussion on merits How to make balancing equations a conceptual exercise ws Balancing equations; work 3,8,14 with particle diagrams, WB T HW – work on A assignments due Wed; daily reflection Nail lab – part 2, allow Cu to dry Types of Reactions Lab – sample data; some demos Discuss representations and standard treatment of energy (potential energy graphs) Discussion of Ech and LOLOL diagrams Work and WB ws Discuss Unit review and test Nail lab – part – calculations, post-lab discussion and particle diagram Unit 8: Stoichiometry – I (moles and mass) Introduce BCA tables, Do worksheet in class, WB Cu-AgNO3 lab pre-lab and part later -Part and allow Ag to dry W HW – daily reflection Finish Ag lab calculations, board meeting (discuss theor and % yield, LR) Review BCA treatment of stoichiometry – how it differs from Dim Anal algorithms More work on stoichiometry, work and WB ws limiting reactant (LR) problems, ws and extra worksheets on LR, sample LR lab handout; PHET sim on LR CHM 594/480 Course syllabus, expectations and schedule WB ws4 Discuss Unit review and test Unit 9: Stoichiometry II (volume and energy) Review PVTn behavior and KMT Partial pressure as consequence of P ∝ n, ws Th HW – daily reflection Molar volume lab, collect and analyze data, board meeting Implications of lab, analog to molar mass Ideal gas law, ws Molarity: solution stoichiometry Work and WB ws Quantitative treatment of energy in reactions Heat of Combustion Lab (or as demo?) Post-lab discussion; Notes on multiple energy representations and ∆H Work and WB ws Discuss Unit review and test Overview of Unit 10 and 11 materials ABCC post-test Wrap up : The Story So Far… (look at ASU and AMTA websites, Unit 1-9 overview doc and modeling resources) Final thoughts; clean up room; raffle; hugs and good byes HW – daily reflection F HW – daily reflections and reading reactions due at midnight CHM 594/480 Course syllabus, expectations and schedule ... registration privileges, disqualification and dismissal For more information, see http://provost.asu.edu/academicintegrity Disability policy: Qualified students with disabilities who require disability... completion, students will have • improved their instructional pedagogy by incorporating the modeling cycle, inquiry methods, critical and creative thinking, cooperative learning, and effective use... verification of eligibility from the Disability Resource Center (DRC) is required Disability information is confidential Suggested resources and readings (prior to the workshop): Modeling website at ASU:

Ngày đăng: 18/10/2022, 16:35

w