T~p chl
Tin hoc
va
Di'eu
khi€n hoc, T.16, S.l (2000), 52-58
A ,
,c
A If
,I,
M9T CACHTIEP C~N RAQUYET f)~NH TRONGCHAN ·f)OAN
LAM SANG
DO VAN THANH
Abstract. The main purpose of this paper is to present an approach for applying aggregation model
in possibility theory proposed in the papers
[3 - 8]
in processes of clinical diagnostics with participation
of many medicine specialists.
1.
D~T VAN DE
Qua trlnh ch[n dean lam sang ngtrci b~nh la qua trlnh thOng thiro'ng diro'c tlnrc hien bO'i t~p
th~ cac chuyen gia y hoc. Day 111.
khfiu
bitt bU9Cva anh hircng quan trong dgn chat hro'ng di'eu trio
M\lC dich cua qua trlnh nay nh~m xac dinh dung benh, rmrc d9 mitc b~nh ciia ngtro'i b~nh va dira ra
bi~n phap dieu tri ban dau.
Trong qua trlnh ch[n dean, m~i chuyen gia y hoc se dtra VaGtri~u chimg Him sang ngtroi b~nh,
dira VaGtri th irc y hoc chung da diro'c t5ng ket va dira VaGtri tlnrc kinh nghiern cua chinh mlnh d€
dua ra
y
kign ch[n dean.
Nhieu tlnh huang xay ra la ngirci b~nh bie'u hi~n lam sang khong ro net, nhirng chuyen gia y
hoc chi co th~ dira ra nhirng ph an dean rieng cua mlnh va ni"em tin VaGsir dung dJtn cua cac phan
doan rieng ay cua m~i chuyen gia n6i chung
Ill.
khac nhau. Trong nhirng trtronghop nhu v~y ta can
phai chon
y
kign cua chuyen gia xuat s;;'c nhat ho~c t5 hop cac
y
kien ciia cac chuyen gia do de' dira
ra m9t ch[n doanlam sang tot nhat c6 the' dtro'c cho ngiro'i b~nh.
Bai bao nay se chi ro d.ng cac
phan i1.oanchv:a chif.c chif.n
ve lam sang ngiro'i b~nh se tao thanh
m9t
CO"
sO-tri thu:c
gia
tr~
can thiet
(ho~c
khd nang)
trong
111
thuyet khd nang.
Bo-iv~y ta c6 the' irng
dung phircrng phap hra chon ho~c phtrong phap tich hop cac
y
kien chuyen gia dC>ivo'i
CO"
so' tri thtrc
trongIy thuyet kha nang da diro'c de xuat trong cac tai li~u
[3-8].
Bai nay chi trlnh bay han chg mot khia canh img dung ciia phtro'ng ph ap tkh hop thong qua
vi~c gi&i thi~u mf hlnh tfch hop trong ch[n dean lam sang ngtrci b~nh.
2.
CO' SO' TRI THUC CAN THlET COA cAc pHAN DoAN
KHONG CH.,lC CHAN
Gii sd' c6 m chuyen gia y hoc tham gia thu'c hi~n ch[n dean lam sang nguoi b~nh. M~i chuyen
gia thirong dira ra cac
y
kien phan dean cua rninh dirci dang t~p cac cau kie'u nhir:
1) Co the' tin rhg (cUc chh rhg) ngiroi b~nh co chirng. b~nh [hoac ngtrci b~nh can diro'c]
"ten
cac
ket lu~n" •
2)
VI
nguei b~nh co cac trieu chimg
"ten
cac
tri~u clnrng"
nen co the' tin rhg (cUc chh
rhg) ngtroi d6 co chirng benh
[hoac
ngiro'i do can diro'c]
"ten
cac
ket luan".
Sau d6 t~p the' cac chuyen gia se phan tfch tat d. cac phan doan d6 de' rut ra cac phan doan
thkh ho'p nh St; Truong hop khi bie'u hi~n lam sang ngtroi b~nh khong ro net ho~c co nhieu bie'u
hi~n la thl m~i chuyen gia thuong cho
y
kien cda mmh dirci dang: .
3) C6 nhieu kha nang tin rhg (gan nhir chdc chdn d.ng, kha cUc cMn rhg, ) .ngtro'i b~nh
co chirng b~nh (ho~c ngiro'i b~nh nen diroc]
"ten
cac
ket lu~n",
ho~c la:
4)
VI
ngiro'i b~nh c6 cac tri~u clurng
"ten
cac
tri~u clnrng"
nen co nhieu kH nang tin r~ng
(
h h~ h
d
••
kh' h
oJ
h
6
~ ) , •
d' , h' b
A
h (h
v , •
d' Ad)
gan n ir c ac c an rang, a c ac c an rang, ngucn
0
co c trng en oac ngtrm
0
nen iro'c
"ten cac
kih
lu~n".
MQT CACHTIEP CA-N RAQUYET D~NH TRONGCHANDoANLAM SANG
53
Trong nhirng ket luan kie'u nay, cac tir nhir: co nhieu khd nang, gan nhv: ch;{c cMn, klui cMc
h" • ~ th" hi A At khf h" h~ "', h d' d" , , h' d' ~" A
can, nen
ac
oc.:
e ien rno sir ong e ae e an ve tm ung an eua cae p an oan. v
1
v~y
din phai eho each danh gia v'e cac evm tjr: co nhieu khd nang, gan nhv: ch;{c chrtn, kha chifc
.is«
Phuong phap dircc sll- dung trong nhirng trircng hop nhir v~y thtro'ng la dung cac gia tri so (ho~c
gia tri
ngon
ngir] de' iroc hrong niern tin
vao
tinh dung ditn
cua cac ph
an
doan
e6 chira
cac
cvm tir
d6.
CHng han ta c6 the' bie'u di~n cac ph an dean dang 3), 4) & tren diroi dang:
5) Chll.e ch1tn ngirci b~nh c6 chirng benh [hoac nguci b~nh din duxrc]
"ten
cac
ket
luan" it
nhat
a
rmrc
a.
6) Neu ngiro'i benh c6
"ten
cac
tri~u chirng"
thl chltc chltn ngiro'i d6 co clnrng benh (ho~c
ngtrci d6 can diroc]
"ten
cac
ket lu~n"
it nhat & rmrc
(3.
5), 6) la each the' hien cua cac cfiu trong cac CO"
sa
tri thtic can thiet gia tri khoang trong ly
thuyet kha nang.
N6i each khac sau khi phan tich tat ca cac phan dean khOng ehll.c ch1tn ciia cac chuyen gia, trng
voi y kien cua m6i thanh vien trong t~p the' chuyen gia eho danh gia rmrc d<,?tin tU'6ng cii a mlnh v'e
S,!
dung dlin cua cac phan doan thich hop nhat rna t~p the' chuyen gia da xac dinh ta se nhan diroc
m9t CO' s& tri thirc can thidt [gia tri khoang] trong ly thuydt kha nang
[1].
Bien nay la ffi9t sir goi
Y
de' d'e xufit
mf
hmh tich hop cac y kien chuyen gia trong qua trinh cha:n doanlam sang.
.• '
~
.•.
,
3. S(1 DO CHANDOAN VA MO HINH TICH HQ'F
3.1.
SO'
do
qua trinh cha?n
doan
Qua trrnh eha:n doanlam sang ngiro'i benh c6 the' diro'c mo ta thong qua 5 giai doan theo so'
dt
sau
Giai dean
1
ehinh la giai dean thu th~p cac y kien phan doan cua cac chuyen gia. Giai doan
2 se loai b3 nhfi:ng phan doan vo ly kh6 e6 the' chap nhan, nhirng ph an doan dir thira. Giai dean 3
tlnrc chat la giai doan thu th~p y kien danh gia v'e niern tin cua m~i chuyen gia v'e
SV'
dung dlin ciia
cac ph an doan cua tat ca cac chuyen gia. Giai dean 4 se tich ho'p cac y kien chuyen gia de'
xay
dung
mot
Y
kien m&i v'e tinh dung dlin ciia t~p cac ph an doan va dua vao y kien nay giai doan 5 se dira
ra ket lu~n lam sang ngtro
i
b~nh va eung cap mi?t t~p tri~u chtrng lam sang moi cling nhir t~p cac
54
DO
VAN THANH
phan doan cung cap cho qua trinh chin doantiep theo.
Trong 5 giai dean nay cac giai doan 2 va 4 phtrc
t
ap va can su' hi) tro' gitip rat nhieu cua may
tfnh. Trong bai nay chira trinh bay phtro ng ph ap tien hanh giai dean 2, ma chd yeu trinh bay each
giai
quyet
giai
dean 4
va khi do giai
doan 5
se d~ dang dtro'c gicl.i
quyet.
3.2. M6 hinh tich h<!p
Ket thuc giai doan 3 cluing ta da. nh~n diro'c t~p cac
y
kien danh gia cho biet rmrc de?can thiet
ve tlnh
trang
dung
cua
t~p
cac phan doan
(no diro'c xem
nhu
I~ me?t CO"
50'
tri
tlnrc]. M6i
y
kien
danh gia khi do thirc chat Ia mot CO" sO-tri th trc kha nang gia tr] can thiet. Vi v~y ta co thg tfch ho'p
cac
y
kien
ph
an doan theo phirong phap da. diro'c trlnh bay trong [6- 8]' c~ thg vi~c tich
hop
nay se
du'cc tien hanh theo htrtrng tiep c~n tien de h6a va diro'c
thuc
hi~n tren cac phan bo kha nang d~c
bi~t d~c tru'ng cho cac
y
kien phan dean do [6- 8].
Duo-i day se du'o'c trlnh bay m9t each tom tift
y
tU'o'ng CO" ban cu a plnro'ng phap nay: Gicl.sU-
r
=
{Si,
i
=
1, , n} Ia t~p cac phan dean xac dang dtro'c xac dinhtrong giai dean 2 [tlnrc chat
cluing
lei.c
ac
c
au trong
ngon ngjr
\ll~nh de
hoac
trong
ngon
ngii' tan tir dip
1). {1
Ia t~p
cac
thg hi~n
doi
vo
i
cac cau
trong
r.
• Ky hi~u (Si, ai)
I
ai
E [0,1]
nghia Ia
phan dean
Sichitc chitn se dung it nhat
voi
rmrc de?ai hay
co the' noi N(Si)
2:
ai,
0-
day N Ia me?t de?do can thiet (hay de? do chitc chitn) tren ngon ngir diroc
sinh tu: t~p
cac
ph an dean Si. Khi do F
=
{(Si, ai)
I
N(S;) 2: ai, ai
E
[0,1]'
i
=
1,
,n}, dtro'c xem
nhir Ia m9t
Y
kien chuyen gia ve rmi'c de?can thiet ctia t~p cac phan dean
r.
Doi vci y kien chuyen gia F phiro'ng phap hinh thtrc de' xac dinh phan bo khi nang d~c trtrng
cho
y
kien nay nhu' sau:
()
{
min{l- ail, neu w F oSi
7l'F
w
=
1
neu w F Sl 1\ S2 1\ 1\ Sn
Vi~c
tfch hop cac
y kien
chuyen
gia kigu nhir y kien
chuyen
gia
F
diroc thirc hien tren
cac
ph an bo do.
Trong [6- 8] cluing tai da. giai thi~u me?t so dieu ki~n can thiet doi hoi cho cae qua trinh tfch
hC?1>"Chi phu thuoc s~' ki~n (Pointwise)" cu a cac phan bo nhir v~y, dong thai. da. xay dung me?t so
to an tu' phuc vv cho cac qua trlnh tich hop theo cac dieu kj~n doi hoi nay va theo m9t S() tir trr&ng
chien hroc tich hC?1>kh ac nhau, trong so do die'n hlnh
la
cac toan tu- tich ho'p: Ton
tronq
11
kitn so
(tong, Ton trqng tr~t ttf
Lay
y
hen, Loei trv: stf khcic bi~t.
voi
rnoi w
E
{1
([1,7-8]).
3.3. M6 hinh tich h<!p m&-r<)ng
• Ma hmh nay thirc chat Ia me?t su' khai quat hoa md hlnh vira diro'c trinh bay tren. Neu nhu
mo hmh tren nh~m gicl.iquyet van de rich hop cac
y
kien chuyen gia,
o'
do ta chira quan tam mdt
each thoa dang den str khac bi~t ve trinh de?tri thirc, kinh nghiern cua cac chuyen gia tham gia vao
qua trinh chin doan, thl
ma
hlnh me rfmg se khitc phuc nhuoc di~m nay
[9-10].
Cu thg ta se tfch
hC?1>cac y kien chuyen gia khi mi)i chuyen gia deu diro'c gltn
vci
me?t trong S() d~ do tam quan trong,
hay do gia tri kinh nghiem, tri thirc cua chuyen gia do.
Co hai each tiep c~n de' gicl.iquyet van de nay
[9-10].
Trong
[9]
chung toi da. trmh bay each
tiep c~n "cM phllothuqc stf ki~n", con trong
[10]
trlnh bay each ti~p c~n "each thu:c tich
ho
p
La.
giong
nluiu. (hay Likewise)"
M
gicl.iquydt van de mo- r9ng nay. Trong
[9]
chung toi con chi ra r~ng khi quan
tam m9t each thoa dang den kinh nghiern, tri thirc cua chuyen gia tham gia chin doan thi trong hai
phirorig phap gicl.iquydt , phuong phap Lu a choti [11] khong con phu hop nira.
Mo hlnh mo' r9ng cho phep tich hC?1>cac y kien F ivai trong so do giatr] kinh nghiern, tri thU'c
cua chuyen gia Ia
ai
E [0, 1]
d~ sinh ra y kien chung F vo'i trong S()
a
se diro'c thu-c hi~n thOng qua
hai cang do~n:
a.
Y
kien tich hC?1>F dU'qc sinh ra theo
ma
hinh tich hqp tren.
b. Xay dV'ng tr9ng so
a
cho F
a
=
<I>(a1'
a2, , am)
MQT CACHTIEP CA-N RAQUYET f)~NH TRONGCHAN f)oAN LAM SANG
55
trong do
m
'" ai
~(Pl,p2'
"',Pm)
= ~
2:
a
Pi
i=1
.>1
J
J_
6-day m la s5 chuyen gia eha:n dean,
PiE
[0,1] vo'i moi
i
=
1, ,m.
Tinh chat cua toan tu' nay dii diro'c chi ratrong [10], ev the' la no thoa 7 di'eu ki~n doi hoi eho
cac qua trlnh tieh hop
"Chi ph1f thuqc
stf ki4n"
cda cac phan bo xac xuat,
4.
vi
DlJ MINH HQA
(J
day chi trmh bay vi du minh hoa qua trlnh eh.in doan sau khi ket thuc giai doan
2,
tu-e la
dii xac dinh diro'c t~p cac ph an doan xac dang cila t~p the' cac chuyen gia tham gia eh.in dean.
Gia su' cac phan doan do la nhu sau:
8
1
:
Neu tn~ em bi suy dinh dufrng thl kha ehite ehltn rhg dira tr~ da vang, bung ong, bieng an.
8
2
:
Neu tr~ em bi da
vang,
bung
ong,
bieng an thi
ttrong
d5i eUe ehltn r~ng
dii'a
tr~ bi gan yeu.
8
3
:
Neu diia tr~ bi suy dinh dufrng, nhirng dai tie'u ti~n rat tot thl gan nhir ehlte ehltn rhg dira
tr~ khong mite b~nh ve gan.
8
4
:
Chlte ehltn rhg dira tr~ bi suy dinh dufrng.
8
5
:
Gan nhir ehite ehltn d.ng
CO"
quan dai tie'u ti~n cua dira tr~ tot,
Th~t ra t~p cac ph an dean "nay la m9t
Sl!:
bien the' tIT m9t vi du cua Dubois va Prade
[2],
dii
dircc nghien ciru phat trie'n trong [7],
D~t:
a
=
"dira tr~ bi suy dinh dufrng":
b
=
"du-a tr~ bi da
vang,
bung ong. bieng an"; c
=
"dira tr~ bi gan yeu";
d
=
"co"quan dai tie'u ti~n cua dira tr~ t5t",
Khi do cac ph an doan tren dircc viet dum dang
8
1
:
-'a V b;
8
2
:
=b
v c;
8
3
:
-,a V
-cd
v -,c;
8
4
:
a;
8
5
:
d
va t~p cac loopthe gi&i co the' diro'c sinh ra tu: t~p cac phan doan nay se gom co:
WI
=
(a,
b,
c,
d);
W2
=
(a,b,c,-,d);
W3
=
(a,b,-,c,d);
W4
=
(a,b,-,c,-,d);
W5
=
(a,-,b,c,d);
W6
=
(a,-,b,c,-,d);
W7
=
(a,-,b,-,c,d);
Ws
=
(a,-,b,-,c,-,d);
Wg
=
(-,a,b,c,d);
WID
=
(-,a,b,c,-,d);
Wu
=
(-,a,b,-,c,d);
W12
=
(-,a, b,
-'c,
-,d);
W13
=
(-,a, -,b,
c,
d);
W14
=
(-,a, -,b,
c,
-,d);
WIS
=
(-,a, =b, +-c , d);
W16
(-,a, -,b, -'C, -,d).
Giai doan 3: Thu th~p
y
kien danh gia cua c'ac
chuyen
·gia
ve
t~p cac phan doan
Gia. su' 7 chuyen gia tham gia eh.in dean eho cac
y
kien cda ho ve rmrc de? ean thiet doi v&i
tinh trang dung ciia cac phan doan tren diroc me ta. trong bang 1.
Bdng
1.
Y
kien cua cac chuyen gia
Chuyen gia
Phan
doan
(8d
(8
2
)
(8
3
)
(8
4
)
(8
s
)
-,a
vb
-,b
V
c
-'a
V
-,d
V
-,c
a d
Fl
0,70 0,60 0,80 0,50 0,20
F2
0,70 0,60
0,70 0,50 0,30
F3
0,60
0,55
0,75 0,40
0,20
F4
0,60 0,45
0,45 0,30
0,45
Fs
0,70 0,50 0,70
0,20 0,50
F6
0,65 0,60 0,65
0,30 0,60
F7
0,60 0,25 0,65
0,40 0,50
56
DO VAN THANH
Theo phiro'ng ph ap xay dirng ph an be kha nang d~e
d.
it nhilt dei vai mt)i y kien
d. nh
an
tren,
ta se nhan diro'c cac ph an be kH nang' d~e
d.
it nhat ttrcrng ling (being
2).
Bdng
2. Being cac phan b9 kha nang d~e trtrng eho cac y kien chuyen gia
WI
W2 W3 W4 Ws
W6 W7
Wg Wg
WlO
Wll
WI2 WI3
W14
W15 WI6
FI
0,20 0,80 0,50 0,40 0,20 0,30 0,30
0,30 0,50
0,50 0,40 0,40
0,40 0,40
0,40 0,40
F2
0,30 0,70 0,50 0,40 0,30 0,35 0,35
0,35 0,50 0,50
0,40 0,40
0,40 0,40 0,40 0,40
F3
0,25
0,80 0,60 0,45
0,25 0,40 0,40 0,40 0,60
0,60 0,45 0,45
0,45 0,45 0,45 0,45
F4
0,40 0,55 0,70 0,55 0,40 0,40 0,40 0,40 0,70
0,55 0,30 0,30
0,60 0,55 0,60 0,55
Fs
0,30
0,50 0,80 0,50 0,30 0,30 0,30 0,30
0,80 0,50
0,20 0,20 0,70 0,50
0,70 0,50
F6
0,35 0,40 0,70 0,40 0,35 0,35 0,35 0,35
0,70 0,40 0,30 0,30
O,!?O
0,40 0,60 0,40
F7
0,35
0,50 0,75 0,50 0,40 0,40 0,40 0,40 0,60
0,50 0,35
0,35 0,60 0,50 0,60
0,40
Giai doan 4: Tich h<!p
Y
kien chuyen gia
a. Tich ho'p phan b~e theo cac 16"pco cung thu tv tv nhien
(lien ket
veri
mqt loos todn. ttt)
Gici suor~ng ta chon toan tu
ton tronq 11kien
so
il,ong
!P
rm
la toan tu' lien ket v6i. qua trinh
tich hop phan b~e nay.
Ky hi~u
1ragg
la y kien tich hop diro'c sinh ra bch qua trinh nay, khi d6
1r
a
gg
=
!P
rm
(!p
rm
(1rF, (~), 1rF, (w), 1rF. (w)),
!P
rm
(1rF. (w), 1rF. (w), 1rF6(w)
)!p
rm
(1rFT (w)))
v6i. moi lap the' gi6i. e6 thi w.
D~t
1rdw)
=
!P
rm
(1rF, (W),1rF,(W),1rF.(W))
va
1r2(W)
=
!Prm(1rF.(W),1rF.(W),1rF6(w)),
khi d6 ta
nhan diroc bang minh hoa cac phfin be
1r1,
1r2, 1rFT'
1rag g
sau day: .
WI
W2 W3 W4 Ws
W6 W7 Ws
Wg
WlO
Wll
WI2
'W13
W14
WIS WI6
1r1
0,30 0,80 0,50 0,40
0,50 0,40 0,40 0,40 0,50 0,50 0,40 0,40
0,40
0,40 0,40 0,40
1r2
0,40 0,55 0,70
0,55 0,40
0,40 0,40 0,40 0,70 0,55 0,30 0,30 0,60 0,55
0,60 0,55
1rF
T
0,35
0,50 0,75 0,50
0,40 0,40 0,40 0,40
0,60
0,50 0,35 0,35 0,60 0,50 0,60 0,40
1ragg
0,40
0,80 0,75 0,55 0,40
0,40 0,40 0,40 0,70 0,50 0,40 0,40 0,60 0,55 0,60 0,40
Vi v~y trong truong hop nay y kien tich hop tir 7 y kien tren ve cac phan doan d~ cho la:
(S1,
0,6),
(S2,
0,6),
(S3,
0,6),
(S4,
0,6)' (Ss, 0,6).
b. Tich h<!p phan b~c theo cac 16"pco cling d(J mau thu.5.n
(lien ktt
vo-i
mqt
loai
toan ttt)
Toan tu diroc lien ket voi qua trinh tich hop phan b~e nay toan tn-
ton trqng thti: ttf
!Pro,
trong
d6 cac ham
h;(x)
diro'c xac dinh nhir sau:
{
~ 1
°
neu
x ::;
1 - -:-
h;(x)
=
t
1
x
neu 1 ~
x
>
1 -
r:
, t
Ta c6 th~ thjra
nhsn
rhg trong qua trinh thu nh~n tri thirc, vai hai y kien bat
ky,
y kien nao
e6 d9 mau thuh nho hon se diro'c coi
111.
quan trong hon va dircc
U'U
tien thu nh~n
truxrc.
Bay gi<r
gia suo
1r:
gg
la ky hi~u cua ph an be ket qua nhan diro'c tir qua trinh tich hop phan b~e lien ket vai
toan tu
!Pro
&
tren, khi d6
1r:
gg
diro'c xac dinh boi
1r:gg(w)
=
!pro(
e.,
(1rF, (w), 1rF. (w), 1rF. (w)),
!Pro
(1rFT(w))'
!Pro
(1rF, (w), 1rF. (w), 1rF6(w)))
v6i. moi lap the gi6i. c6 th~
w.
MQT CACHTIEPCANRAQUYET D~NH TRONGCHANDOANLAM SANG
57
D~t
7rr{W)
=
<1>ro(7rFl(W),7rF3(W),7rFS(W)), 7r7(W)
=
<1>ro(7rFr(W)),
7r;(W)
=
<1>ro(7rF2 (W), 7rF. (W), 7rF6 (W)),
khi d6 ta nh an dtro'c bang sau:
WI W2 W3 W4 W5 W6 W7
Wg
Wg
WlO
Wll W12 W13 W14 W15
W16
7r*
0,20
0,80
0,80 0,40 0,20 0,30 0,30 0,30 0,80 0,60 0,40 0,40 0,70
0,40 0,70 0,40
1
7r7
0,35 0,50 0,75 0,50 0,40 0,40 0,40 0,40 0,60 0,50 0,35 0,35 0,60 0,50 0,60
0,40
7r*
0,30 0,70 0,70 0,55 0,30 0,35 0,35 0,35 0,70 0,55
0,40
0,40 0,60 0,55 0,60 0,55
2
7r;gg
0,20 0,80 0,80 0,40 0,20 0,30 0,30 0,30 0,80 0,60 0,40 0,40
0,70
0,40 0,70 0,40
Tir bing nay ta
nhan
dtro'c
y
kien
tich hop
F:gg:
(8
1
,
0,8)'
(8
2
,
0,2),
(8
3
,
0,8),
(8
4
,
0,2),
(8
5
,
0,2).
c. Tich hqp phan b~c lien ket
vOi
hai toan tu-
Neu ta
chon
<1>1
=
<1>ro
v&i
cac
ham hdx) diro'c
xac dinh nhu
o'
phan tren va
<1>2
=
<1>rm.
Gia stt·
7r~gg
la
phan
bo tich hop ket
qua
cua
qua trlnh tich hop ph an b~c lien ket v&i
cac toan
tu-
<1>1, <1>2.
Ta c6
7r~gg(W)
=
<1>ro(7rdW),7rFr(W),7r2(W))'
va ta c6 bang sau:
Wl
W2 W3 W4 W5 W6 W7 Ws
Wg
WID
wll W12 W13
W14 W15 W16
7r~gg
0,30 0,80 0,70 0,40 0,50
0,40
0,40 0,40
0,70 0,50 0,40 0,40 0,60 0,40 0,60 0,40
Vi v~y ta
nhan
diro'c
y
kien tich
hop
F~gg:
(8
1
,
0,5)'
(8
2
,
0,2)'
(8
3
,
0,5),
(8
4
,
0,3),
(8
5
,
0,2).
Giai doan 5: Suy di~n tren
y
kien tich hqp d~ sinh ra nhfrng phan doan lllrri
Nhfrng
ph
an
doan moi
nay cUng v&i rmrc di? din thiet ve tinh dung dlb
cua
n6 se diroc xern '
130
phan doan chung cii a t~p th~ chuyen gia. Ch1ilg han
"aua- tre bi gan ylu"
la mi?t trong cac phan
dean
c6 th~ suy di~n dtro'c tir
cac phan dean
n6i
tren.
Theo
y
kien cua m6i chuyen gia ve mire di? din thiet ve tinh dung dh cii a t~p
cac
phan doan
[diro'c mo tA
?y
cac
bang
1,
2) ta nh~n diro'c rmrc di? can thiet it nhat d~
"aua tre b; gan ylu"
ttro'ng
iing
vo'i
7
y
kien
chuyen
gia d6
u
0,6; 0,6; 0,55; 0,4; 0,3; 0,4; 0,4.
Neu
y
kien chung dtroc sinh b?Yiqua trinh tich ho'p
phan
b~c lien ket
voi
toan
td- ton
trong
y
ki~n so dong, thi theo
y
kien nay mire di? can thiet it nhat
M
phan doan
"aua tre bi gan ylu"
khOng
nho ho'n 0,2.
Neu
y
kien chung dtro'c sinh b&i qua trinh tich
ho'p ph
an b~c lien ket
vo'i toan
td- ton
trong
thii' tu, thi theo
y
kien nay rmrc di? can thiet it nhat
M
phan doan
"aua tre bi gan ylu"
khOng nho
hon 0,3.
Neu
y
kien chung diro'c sinh b?Yiqua trlnh tich ho'p ph an b~c sd- dung h~n hop hai loai toan td-
tich hop la toan td- ton trong
y
kien
si5
dong va toan td- ton trong tlur t~, thi theo
y
kien nay mire
di? can thiet it nhat
M
phan dean
"aua tre bi gan ylu"
khOng nho hon 0,4.
5.
KET
LU~N
Van de xay dung cac h~ chuyen gia va h~ tro' giup quyetdinhtrong chin doan b~nh vm cac
tri tlnrc day dil, chitc chitn cila chuyen gia dii dtro'c quan tam nghien
CU:u
tir cuoi th~p k170 va dii c6
san ph am thirong mai, nhimg voi cac tri thirc dircc biet khong day dd, khOng chitc chitn vh chira
co san phitm thiro'ng mai chfnh thirc m~c du n6 du'oc quan tam nghien ctru rat manh trong vai narn
~d~ .
Thirc te trong cac qua trinh chin dean va dieu tri, thircng hay xay ra trirong hop la nhieu
b~nh nh an c6 tri~u chimg virot qua kha nang chitn doan chinh xac cua hac
S1
dieu tri va cling thirong
58
DO
VAN THANH
g~p trirong hop co ngiro'i b~nh mitc phai nhirng can b~nh it khi xay ra, th~m chi co
d.
trircng hop
ngtro'i b~nh mi{c phai can b~nh mo'i xuat hien, Ltic do c~n thi~t co nhieu chuyen gia y tg tham gia
ch[n doanlam sang ngiroi b~nh, va noi chung trong nhirng trtrong hop nay tri thirc, kinh nghiern
ciia m6i chuyen gia tham gia ch~n doan thuong ciing khc3ngd~y dli va khong chltc chh v"ecan b~nh
do. Nhirng nghien. crru dircc trmh
.bay
trong bai b3.0 nay d~c bi~t thich hop khi g~p phdi nhfmg tinh
hudng nhir v~y. Tuy nhien no ciing co th€ drroc sU:dung cho nhimg truong hop chi co m9t ngufri
tham gia cha:n doan ho~c khi cac chuyen gia tham gia cha:n dean co tri thirc, hi€u bi~t d~y dli, chitc
chltn vE;tri~u chirng lam sang cua nguoi b~nh do.
Plnrong phap giai quy~t giai dean 2 trong 5 giai doan noi .tren ciing da. dtro'c nhieu tac giA
nghien ctru va noi chung da. co th€ hinh thanh phtrong phap
M
giai quygt cho giai doan nay .
. Nhirng ket qua trinh bay trong bai b3.0 mei dircc dimg
a
rmrc d9 nghien ciru
CO"
ban. D€ xay
dung m9t h~ tro' giiip quyet dinh
C1;1
th€ theo each tiep c~n dtroc trinh bay
a
tren, chd yeu phai giai
quyet m9t so van dE;con lai nhir: xac dinh vimg irng dung thich hop trong y h9C va nghien ciiu t5
clnrc xay dung phan mern.
TAl
L~U
THAM KHAO
[1] D. Dubois,
J.
Lang, H. Prade, Possibilistic Logic,
Handbook of logic in Artificial Intelligence
and Logic Programming, Volumme 9, Nonmonotonic Reasoning and Uncertain Reasoning, Eds.'
Dov. M. Gabbay, C.
J.
Hogger,
J.
A. Robinson, D. Nute, Clarendon Press, Oxford, 1994, 438-
510.
[2] D. Dubois and H. Prade, Epistemic entrenment and possibilistic logic,
Artificial Intelligence
50
(1991) 223-239.
[3] D. V. Thanh, A relationship between the possibility logic and the probability logic,
Computer
and Artificial Intelligence
17 (1) (1998) 51-68.
[4] D. V. Thanh, Stability of the principle of minimal Specificity and maximal Buoancy,
Tq.p cM
Tin hoc va Dieu khie'n hoc
12,
No.4 (1996) 1-17.
[5] D. V. Thanh, Application of Stability of the principle of minimal Specificity and maximal
Buoancy, accepted for oral presentation in
The Joint Pacific Asian Conference on Expert Sys-
tem, Singapore International Conference on Interlligent Systems,
Singapore, 24-27 February,
1997.
[6] D. V. Thanh, Aggregation of distributions and Aggregation operators,
Top cM Tin hoc va Dieu
khie'n hoc
12,
No.3 (1996) 47-63.
[7] D. V. Thanh, Hierarchical Aggregation of Possibility Distributions,
Proceedings of the National
Center for Science and Technology of Vietnam
9,
No.1 (1997) 29-41.
[8] D6 Van Thanh, Phuong phap l~p lu~n tren cac co' so' tri thU:c co nhieu danh gia khac nhau,
Tuye'n t~p cac btio ctio khoa hoc ky ni~m 20 niim. thanh l~p Vi~n Cong ngh4 thong tin T.12,
1996, 403-418.
[9] D. V. Thanh, Possibility Consensus Model,
Proceedings of Japan - Vietnam Bilateral Symposium
on Fuzzy Systems and Applications,
Ha Long, 30
th
September - 2th October, 1998, 288-293.
[10] D6 Van Thanh, Posibility distribution's aggregation via probability model, 1997, to appear in
Proceedings of the National Center of Science and Technology of Vietnam.
[11] D. V. Thanh, Posibility Information Measures and Selection Approach,
Computer and Artificial
Intelligence
18
(6) (1999) 595-610.
Nh4n bai ngay
12 - 7 -1 998
Van phong Ban cM doo ChuO'ng trinh quoc gia
ve Cong ngh~ thOng tin
. ac c an rang, a c ac c an rang, ngucn
0
co c trng en oac ngtrm
0
nen iro'c
"ten cac
kih
lu~n".
MQT CACH TIEP CA-N RA QUYET D~NH TRONG CHAN. tiep theo.
Trong 5 giai dean nay cac giai doan 2 va 4 phtrc
t
ap va can su' hi) tro' gitip rat nhieu cua may
tfnh. Trong bai nay chira trinh bay