1. Trang chủ
  2. » Giáo án - Bài giảng

CHƯƠNG 1 BAI GIANG DIEN TU XSTK

31 3 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Chương 1
Trường học Khoa Khoa Học và Máy Tính
Chuyên ngành Xác Suất Thống Kê
Thể loại Bài Giảng
Năm xuất bản 2010
Định dạng
Số trang 31
Dung lượng 483,21 KB

Nội dung

CHƯƠNG I ĐẠI CƯƠNG VỀ XÁC SUẤT §1 Biến cố và quan hệ của giữa các biến cố CHƯƠNG I ĐẠI CƯƠNG VỀ XÁC SUẤT §1 Biến cố và quan hệ của giữa các biến cố 1 Phép thử và biến cố 2 Phân loại biến cố gồm 3 loại.

CHƯƠNG I ĐẠI CƯƠNG VỀ XÁC SUẤT §1:Biến cố quan hệ biến cố Phép thử biến cố Phân loại biến cố : gồm loại - Biến cố chắn:  - Biến cố khơng thể có hay khơng thể xảy ra:  - Biến cố ngẫu nhiên: A, B, C… So sánh biến cố Định nghĩa 1.1: A  B (A nằm B hay A kéo theo B) nếu A xảy B xảy ra.Vậy A  B A B B  A Khoa Khoa Học Máy Tính Xác Suất Thống Kê Chương @Copyright 2010 Định nghĩa 1.2: A được gọi là biến cố sơ cấp  B  A, B  A Các phép toán biến cố A.B  A  B xảy và A xảy B xảy A  B  A  B xảy và A xảy B xảy A  B xảy và A xảy và B không xảy A  A Khoa Khoa Học Máy Tính xảy và A không xảy Xác Suất Thống Kê Chương @Copyright 2010 • Hình 1.1 Khoa Khoa Học Máy Tính Hình 1.2 Xác Suất Thống Kê Chương @Copyright 2010 • Các phép tốn biến cố có tính chất giống phép tốn tập hợp, có tính chất đối ngẫu: Ai   Ai ,  Ai   Ai i i i i Ngôn ngữ biểu diễn: tổng = có ;tích = tất (A = có phần tử có tính chất x) suy (khơng A = tất khơng có tính chất x) Ví dụ 1.1: (A = có người khơng bị lùn) suy ra( khơng A = tất lùn) • Định nghĩa 1.3: biến cố A và B được gọi là xung khắc với A.B   Khoa Khoa Học Máy Tính Xác Suất Thống Kê Chương @Copyright 2010 §2: Các định nghĩa xác suất • Định nghĩa cổ điển xác suất • Định nghĩa 2.1: giả sử phép thử kết cục là đồng khả và có tất n kết cục vậy Kí hiệu m là số kết cục thuận lợi cho biến cố A Khi xác suất m biến cố A là: ( A)  n • Ví dụ 2.1: Trong hộp có bi trắng, bi đen.Lấy ngẫu nhiên bi Tính xác suất để lấy được bi trắng • Giải C63 C42  C10 Khoa Khoa Học Máy Tính ( phân phối siêu bội) Xác Suất Thống Kê Chương @Copyright 2010 Chú ý: lấy lúc bi giống lấy bi khơng hồn lại • Ví dụ 2.2: Có 10 người lên ngẫu nhiên toa tàu Tính xác suất để toa thứ khơng có người lên: 410   10 Định nghĩa hình học xác suất: Định nghĩa 2.2: giả sử phép thử kết cục là đồng khả và được biểu diễn điểm hình học miền  Kí hiệu D là miền biểu diễn kết cục thuận lợi cho biến cố A Khi xác suất biến cố A là: P(A)= độ đo D/độ đo  (độ đo là độ dài,diện tích thể tích) Khoa Khoa Học Máy Tính Xác Suất Thống Kê Chương @Copyright 2010 • Ví dụ 2.3: Chia đoạn AB cố định ngẫu nhiên thành đoạn Tính xác suất để đoạn lập thành cạnh tam giác • Giải: Gọi độ dài đoạn thứ 1,2 là x,y.Khi đoạn thứ là l-x-y  x  0, y   x  y  l l  x  y  x  y  l  x  y  l     D x  l  x  y  y   y    ( A)  y l  x  y  x   l  x    Khoa Khoa Học Máy Tính Xác Suất Thống Kê Chương @Copyright 2010 HÌNH 2.1 Khoa Khoa Học Máy Tính Xác Suất Thống Kê Chương @Copyright 2010 • Ví dụ 2.4: Ném lên mặt phẳng có kẻ những đường thẳng song song cách khoảng là 2a kim có độ dài 2t

Ngày đăng: 21/09/2022, 09:01

HÌNH ẢNH LIÊN QUAN

• Hình 1.1 Hình 1.2 - CHƯƠNG 1 BAI GIANG DIEN TU XSTK
Hình 1.1 Hình 1.2 (Trang 3)
HÌNH 2.1 - CHƯƠNG 1 BAI GIANG DIEN TU XSTK
HÌNH 2.1 (Trang 8)
HÌNH 2.2 - CHƯƠNG 1 BAI GIANG DIEN TU XSTK
HÌNH 2.2 (Trang 10)
HÌNH 2.3 - CHƯƠNG 1 BAI GIANG DIEN TU XSTK
HÌNH 2.3 (Trang 11)
HÌNH 3.1 - CHƯƠNG 1 BAI GIANG DIEN TU XSTK
HÌNH 3.1 (Trang 17)