1. Trang chủ
  2. » Công Nghệ Thông Tin

Bayesian linear regression

10 2 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 1,7 MB

Nội dung

Bayesian linear regression Dr Merlise Clyde body fat Source https commonimedia orgwikiFile Obesity waist circumference svg body fat data 80 100 120 140 0 10 20 30 40 abdomen circumference (cm.Bayesian linear regression Dr Merlise Clyde body fat Source https commonimedia orgwikiFile Obesity waist circumference svg body fat data 80 100 120 140 0 10 20 30 40 abdomen circumference (cm.

Bayesian linear regression Dr Merlise Clyde body fat Source: https://commons.wikimedia.org/wiki/File:Obesity-waist_circumference.svg body fat data ˆ ˆ + xi fitted yˆi = ↵ σ \at = Bodyf MSE = 39.28 + 0.63 Abdomen 10 Bodyfat 20 30 40 values residuals "ˆi = yi 80 100 120 140 abdomen circumference (cm) yˆi Pn "ˆi i=1 n model and prior ‣ model Y i = ↵ + xi + "i iid ‣ "i ⇠ N(0, ) conjugate bivariate normal-gamma distribution ↵| | 1/ ⇠ N(a0 , ⇠ N(bbo0 , ⇠ S↵ ) cov(↵, S ) G(⌫0 /2, ⌫0 /2) | )= S↵, reference prior and posterior distributions reference prior p(↵, , reference posterior ) / 1/ | y , , y n ⇠ tn ↵ | y1 , yn ⇠ tn ↵ + xi | y1 , yn ⇠ tn s yi = 2 ⇣ ⇣ sY |X ( n ˆ, sd( )2 ↵ ˆ , sd(↵) ⌘ 2 ˆ ↵ ˆ + xi , syi + (xi x ¯) Sxx ) ⌘ estimates post mean post sd 2.5% 97.5% (intercept) -39.28 2.66 -44.52 -34.04 abdomen 0.63 0.03 0.58 0.69 posterior mean ± t1 ↵/2,n posterior standard deviation predicting body fat ‣ posterior predictive distribution for a new case yn+1 = ↵ + xn+1 + "n+1 ‣ is also a Student t distribution with n − df yn+1 |y1 , yn ⇠ tn yˆn+1 syn+1 ⇣ yˆn+1 , syn+1 ˆ =↵ ˆ + xn+1 ⇣ = ˆ 1+ n + ⌘ ⌘ (x x ¯ ) n+1 P (xi x ¯ )2 predicting body fat (continued) syn+1 =ˆ ⇣ 1+ n + ⌘ (x x ¯ ) n+1 P (xi x ¯ )2 posterior uncertainty about α + βxn+1 ‣ depends on xn+1 spread ‣ is higher for xn+1 far from x additional variability +sY |X due to εn+1 30 20 10 bodyfat 40 prediction intervals 80 100 120 abdomen 140 summary ‣ under reference prior, point estimates and Bayesian credible intervals are equivalent to frequentist estimates and confidence intervals ‣ use standard software to obtain ‣ change in interpretation ‣ reference analysis ... prediction intervals 80 100 120 abdomen 140 summary ‣ under reference prior, point estimates and Bayesian credible intervals are equivalent to frequentist estimates and confidence intervals ‣ use

Ngày đăng: 08/09/2022, 07:30

w