1. Trang chủ
  2. » Công Nghệ Thông Tin

Data Science Machine Learning Full Stack Roadmap Himanshu Ramchandani M Tech

25 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 25
Dung lượng 340,7 KB

Nội dung

Data Science Machine Learning Full Stack Roadmap Himanshu Ramchandani M Tech | Data Science The Roadmap is divided into 12 Sections Duration 100 Hours (4 to 5 Months) 1 Python Programming and Logic Bu.

Data‌‌Science‌  ‌ Machine‌‌Learning‌  ‌ Full‌‌Stack‌‌Roadmap‌  ‌   ‌   ‌   ‌ Himanshu‌‌Ramchandani‌  ‌ M.Tech‌‌|‌‌Data‌‌Science‌  ‌ The‌‌Roadmap‌‌is‌‌divided‌‌into‌‌12‌‌Sections‌  ‌   ‌ Duration:‌‌100‌‌Hours‌‌(4‌‌to‌‌5‌‌Months)‌  ‌  ‌   ‌ 1.‌‌Python‌‌Programming‌‌and‌‌Logic‌‌Building‌  ‌   ‌ 2.‌‌Data‌‌Structure‌‌&‌‌Algorithms‌  ‌   ‌ 3.‌‌Pandas‌‌Numpy‌‌Matplotlib‌  ‌   ‌ 4.‌‌Statistics‌  ‌   ‌ 5.‌‌Machine‌‌Learning‌  ‌   ‌ 6.‌‌Natural‌‌Language‌‌Processing‌  ‌   ‌ 7.‌‌Computer‌‌Vision‌‌    ‌   ‌ 8.‌‌Data‌‌Visualization‌‌with‌‌Tableau‌  ‌   ‌ 9.‌‌Structure‌‌Query‌‌Language‌‌(SQL)‌  ‌   ‌ 10.‌‌Big‌‌Data‌‌and‌‌PySpark‌  ‌   ‌ 11.‌‌Development‌‌Operations‌‌with‌‌Azure‌  ‌   ‌ 12.‌‌Five‌‌Major‌‌Projects‌‌and‌‌Git‌  ‌   ‌   ‌   ‌   ‌ Technology‌‌Stack‌  ‌   ‌ Python‌  ‌ Data‌‌Structures‌  ‌ NumPy‌  ‌ Pandas‌  ‌ Matplotlib‌  ‌ Seaborn‌  ‌ Scikit-Learn‌  ‌ Statsmodels‌  ‌ Natural‌‌Language‌‌Toolkit‌‌(‌‌NLTK‌‌) ‌ ‌ PyTorch‌  ‌ OpenCV‌  ‌ Tableau‌  ‌ Structure‌‌Query‌‌Language‌‌(‌‌SQL‌‌) ‌ ‌ PySpark‌  ‌ Azure‌‌Fundamentals‌  ‌ Azure‌‌Data‌‌Factory‌  ‌ Databricks‌  ‌ 5‌‌Major‌‌Projects‌  ‌ Git‌‌and‌‌GitHub‌  ‌   ‌   ‌   ‌   ‌   ‌ 1‌‌|‌‌Python‌‌Programming‌‌and‌‌Logic‌‌Building‌  ‌   ‌ Basics‌  ‌ 01 Variables‌  ‌ 02 Print‌‌function‌  ‌ 03 Input‌‌f rom‌‌user‌  ‌ 04 Data‌‌Types‌  ‌ a Numbers‌‌    ‌ b Strings‌‌    ‌ c Lists‌‌    ‌ d Dictionaries‌‌    ‌ e Tuples‌‌    ‌ f Sets‌‌    ‌ g Other‌‌Types‌‌    ‌ 05 Operators‌  ‌ a Arithmetic‌‌Operators‌‌    ‌ b Relational‌‌Operators‌‌    ‌ c Bitwise‌‌Operators‌‌    ‌ d Logical‌‌Operators‌‌    ‌ 06 Type‌‌conversion‌  ‌ Control‌‌Statements‌  If‌‌Else‌  ‌ a If‌‌    ‌ b Else‌‌    ‌ c Else‌‌If‌‌    ‌ d If‌‌Else‌‌Ternary‌‌Expression‌  ‌ While‌‌Loops‌  ‌ a Nested‌‌While‌‌Loops‌‌    ‌ b Break‌‌    ‌ c Continue‌‌    d pass‌‌    ‌ e Loop‌‌else‌  ‌ Lists‌  ‌ List‌‌Basics‌  ‌ List‌‌Operations‌  ‌ List‌‌Comprehensions‌  ‌ List‌‌Methods‌  ‌ Strings‌  ‌ String‌‌Basics‌‌    ‌ String‌‌Literals‌‌    ‌ String‌‌Operations‌‌    ‌ String‌‌Comprehensions‌‌    ‌ String‌‌Methods‌  ‌  ‌ For‌‌Loops‌  ‌ Functions‌  ‌ Nested‌‌For‌‌Loops‌  ‌ Break‌  ‌ Continue‌  ‌ Pass‌  ‌ Loop‌‌else‌  ‌  ‌ Functions‌  ‌ Definition‌‌    ‌ Call‌‌    ‌ Function‌‌Arguments‌‌    ‌ Default‌‌Arguments‌‌    ‌ Docstrings‌‌    ‌ Scope‌‌    ‌ Special‌‌functions‌‌Lambda,‌‌Map,‌‌and‌‌Filter‌‌    ‌ Recursion‌  ‌ Functional‌‌Programming‌‌and‌‌Reference‌‌Functions‌  ‌  ‌ Dictionaries‌  ‌ Dictionaries‌‌Basics‌  ‌ Operations‌  ‌ Comprehensions‌  ‌ Dictionaries‌‌Methods‌  ‌  ‌ Tuples‌  ‌ Tuples‌‌Basics‌  ‌ Tuples‌‌Comprehensions‌  ‌ Tuple‌‌Methods‌  ‌ Sets‌  ‌ Sets‌‌Basics‌  ‌ Sets‌‌Operations‌  ‌ Union‌  ‌ Intersection‌  ‌ Difference‌‌and‌‌Symmetric‌‌Difference‌  ‌ File‌‌Handling‌  ‌ File‌‌Basics‌  ‌ Opening‌‌Files‌  ‌ Reading‌‌Files‌  ‌ Writing‌‌Files‌  ‌ Editing‌‌Files‌  ‌ Working‌‌with‌‌different‌‌extensions‌‌of‌‌file‌  With‌‌Statements‌  ‌  ‌ Exception‌‌Handling‌  ‌ Common‌‌Exceptions‌  ‌ Exception‌‌Handling‌  ‌ a Try‌  ‌ b Except‌  ‌ c Try‌‌except‌‌else‌  ‌ d Finally‌  ‌ e Raising‌‌exceptions‌  ‌ f Assertion‌  ‌   ‌   ‌   ‌ Object-Oriented‌‌Programming‌  ‌ Classes‌  ‌ Objects‌  ‌ Method‌‌Calls‌  ‌ Inheritance‌‌and‌‌Its‌‌Types‌  ‌ Overloading‌  ‌ Overriding‌  ‌ Data‌‌Hiding‌  ‌ Operator‌‌Overloading‌  ‌ Regular‌‌Expression‌  ‌ Basic‌‌RE‌‌functions‌  ‌ Patterns‌  Meta‌‌Characters‌  ‌ Character‌‌Classes‌  ‌ Modules‌‌&‌‌Packages‌  ‌ Different‌‌types‌‌of‌‌modules‌  ‌ Create‌‌your‌‌own‌‌module‌  Building‌‌Packages‌  Build‌‌your‌‌own‌‌python‌‌module‌‌and‌‌deploy‌‌it‌‌on‌‌pip‌  ‌ Magic‌‌Methods‌  ‌ Dunders‌  ‌ Operator‌‌Methods‌  ‌  ‌  ‌  ‌ 2‌‌|‌‌Data‌‌Structure‌‌&‌‌Algorithms‌  ‌  ‌ Analysis‌‌of‌‌Algorithms‌  ‌ Types‌‌of‌‌analysis‌  ‌ Asymptotic‌‌Notations‌  ‌ Big‌‌O ‌ ‌ Omega‌  ‌ Theta‌  ‌ Recursion‌‌and‌‌Backtracking‌  ‌ Stack‌  ‌ Queue‌  ‌ Circular‌‌Queue‌  ‌ Trees‌  ‌ Linked‌‌Lists‌  ‌ Insertion‌‌with‌‌Stack‌  ‌ Insertion‌‌with‌‌Queue‌  ‌ Deletion‌  ‌ Sorting‌  ‌ Bubble‌‌Sort‌‌|‌‌Selection‌‌Sort‌‌|‌‌Insertion‌‌Sort‌‌|‌‌Quick‌‌Sort‌  ‌ Merge‌‌Sort‌  ‌ Searching‌  ‌ Linear‌‌Search‌‌|‌‌Binary‌‌Search‌  ‌  ‌ 3‌‌|‌‌Pandas‌‌Numpy‌‌Matplotlib‌  ‌ Numpy‌  ‌ Understanding‌‌Numpy‌  ‌ Basic‌‌working‌  ‌ Working‌‌with‌‌dimensions‌‌and‌‌matrix‌  ‌ Statistics‌‌basics‌‌Mainly‌‌descriptive‌  ‌ Linear‌‌algebra‌‌operations‌  ‌ Pandas‌  ‌ Dataframe‌‌basics‌  ‌ Different‌‌ways‌‌of‌‌creating‌‌a‌‌data‌‌f rame‌  ‌ Read-write‌‌to‌‌excel‌  ‌ Handling‌‌missing‌‌values‌  ‌ Grouping‌‌data‌  ‌ Merging‌‌and‌‌Concat‌‌data‌‌f rames‌  ‌ Matplotlib‌  ‌ Introduction‌  ‌ Formatting‌‌strings‌  ‌ Legend,‌‌grid,‌‌axis,‌‌labels‌  ‌ Bar‌‌chart‌  ‌ Histogram‌  ‌ Pie‌‌chart‌  ‌  ‌  ‌  ‌ 4‌‌|‌‌Statistics‌  ‌   ‌ Descriptive‌‌Statistics‌‌    ‌ Measure‌‌of‌‌Frequency‌‌and‌‌Central‌‌Tendency‌  ‌ Measure‌‌of‌‌Dispersion‌  ‌   ‌ Probability‌‌Distribution‌  ‌ Gaussian‌‌Normal‌‌Distribution‌  ‌ Skewness‌‌and‌‌Kurtosis‌  ‌   ‌ Hypothesis‌‌Testing‌  ‌ Type‌‌I‌‌and‌‌Type‌‌II‌‌errors‌  ‌ t-Test‌‌and‌‌its‌‌types‌  ‌   ‌ Regression‌‌Analysis‌  ‌ Continuous‌‌and‌‌Discrete‌‌Functions‌  ‌ Goodness‌‌of‌‌Fit‌  ‌ Normality‌‌Test‌  ‌   ‌ ANOVA‌  ‌ Homoscedasticity‌  ‌ Linear‌‌and‌‌Non-Linear‌‌Relationship‌‌with‌‌Regression‌  ‌   ‌ Inferential‌‌Statistics‌  ‌ t-Test‌‌    ‌ z-Test‌  ‌ Hypothesis‌  ‌ One‌‌way‌‌ANOVA‌  ‌ Two‌‌way‌‌ANOVA‌  ‌ Chi-Square‌‌Test‌  ‌ Implementation‌‌of‌‌continuous‌‌and‌‌categorical‌‌data‌  ‌   ‌ 5‌‌|‌‌Machine‌‌Learning‌  ‌   ‌ Linear‌‌Regression‌  ‌ Simple‌‌Linear‌‌Regression‌  ‌ a Evaluating‌‌the‌‌fitness‌‌of‌‌the‌‌model‌‌with‌‌a‌‌cost‌‌   function‌  ‌ b Solving‌‌OLS‌‌for‌‌simple‌‌linear‌‌regression‌  ‌ c Evaluating‌‌the‌‌model‌  ‌ Multiple‌‌Linear‌‌Regression‌‌Polynomial‌‌regression‌  ‌ Applying‌‌linear‌‌regression‌  ‌ Exploring‌‌the‌‌data‌  ‌ Fitting‌‌and‌‌evaluating‌‌the‌‌model‌  ‌ Gradient‌‌descent‌  ‌ Working‌‌with‌‌Different‌‌datasets.‌  ‌ How‌‌to‌‌approach‌‌data‌‌science‌‌problems‌  ‌ Datasets‌  ‌ a House‌‌Price‌‌Prediction‌  ‌ b Salary‌‌prediction‌‌based‌‌on‌‌GMAT‌‌score‌  ‌ c Predicting‌‌the‌‌sold‌‌price‌‌of‌‌players‌‌in‌‌IPL‌  ‌ 10 Summary‌  ‌   ‌ Logistic‌‌Regression‌  ‌ Logistic‌‌Regression‌  ‌ Binary‌‌Classification‌  ‌ Performance‌‌Matrix‌  ‌ Accuracy‌  ‌ Precision‌‌and‌‌Recall‌  ‌ F1‌‌measure‌  ‌ ROC‌‌AUC‌  ‌ How‌‌to‌‌approach‌‌Classification‌‌problems‌  ‌ Datasets‌  ‌ a Predicting‌‌Insurance‌  ‌ b Spam‌‌filtering‌  ‌ c Digit‌‌Classification‌  ‌ d Titanic‌‌Dataset‌  ‌ 10 Summary‌  ‌   ‌ Decision‌‌Tree‌  ‌ Decision‌‌Tree‌  ‌ Nonlinear‌‌Classification‌‌and‌‌Regression‌  ‌ Training‌‌decision‌‌trees‌  ‌ Selecting‌‌the‌‌questions‌  ‌ Information‌‌gain‌  ‌ Gini‌‌impurity‌  ‌ Implementation‌‌with‌‌Scikit-learn‌  ‌ Working‌‌with‌‌datasets‌  ‌ a Salary‌‌Prediction‌  ‌ Summary‌  ‌   ‌   ‌   ‌ Random‌‌Forest‌  ‌ Ensemble‌  ‌ Bagging‌  ‌ Bosting‌  Stacking‌  ‌ Fast‌‌parameter‌‌optimization‌‌with‌‌randomized‌‌search‌  ‌ Datasets‌  ‌ Summary‌  ‌ Naive‌‌Bayes‌  ‌ Naive‌‌Bayes‌‌mathematical‌‌concept‌  ‌ Bayes'‌‌theorem‌  ‌ Generative‌‌and‌‌discriminative‌‌models‌  ‌ Naive‌‌Bayes‌  ‌ Assumptions‌‌of‌‌Naive‌‌Bayes‌  ‌ Solving‌‌dataset‌‌with‌‌problems‌  ‌ Summary‌  ‌   ‌ Understanding‌‌Interview‌‌questions‌  ‌ Data‌‌Science‌‌and‌‌Machine‌‌Learning‌‌interview‌‌questions‌‌with‌‌   answers.‌  ‌   ‌   ‌ Support‌‌Vector‌‌Machines‌  ‌ Support‌‌Vector‌‌Machines‌  ‌ Linear‌‌SVM‌‌Classification‌  ‌ Nonlinear‌‌SVM‌‌Classification‌  ‌ a Polynomial‌‌Kernel‌  ‌ b Adding‌‌Similarity‌‌Features‌  ‌ SVM‌‌Regression‌  ‌ a Under‌‌the‌‌Hood‌  ‌ Hyperparameter‌‌optimization‌  ‌ Summary‌  ‌   ‌ Machine‌‌Learning‌‌Advanced‌‌Concepts‌  ‌ Gradient‌‌Descent‌  ‌ GD‌‌for‌‌Linear‌‌Regression‌  ‌ Steps‌‌for‌‌Building‌‌Machine‌‌Learning‌‌Models‌  ‌ Measuring‌‌Accuracy‌  ‌ Bias-Variance‌‌Trade-off‌  ‌ Applying‌‌Regularization‌  ‌ Ridge‌‌Regression‌  ‌ LASSO‌‌Regression‌  ‌ Elastic‌‌Net‌‌Regression‌  ‌ 10 Predictive‌‌Analytics‌  ‌ 11 Exploratory‌‌Data‌‌Analysis.‌  ‌ Clustering‌  ‌ How‌‌clustering‌‌works‌  ‌ Euclidean‌‌Distance‌  ‌ K-means‌‌clustering‌  ‌ Feature‌‌normalization‌  ‌ Working‌‌with‌‌datasets‌  ‌ Cluster‌‌interpretation‌  ‌ Summary‌  ‌ Recommendation‌‌Systems‌  ‌ Association‌‌rules‌  ‌ Collaborative‌‌filtering‌  ‌ Similarities‌  ‌ Surprise‌‌library‌  ‌ Building‌‌Recommendation‌‌Engine‌  ‌ Euclidean‌‌distance‌‌score‌  ‌ Pearson‌‌correlation‌‌score‌  ‌ Generating‌‌movie‌‌recommendations‌  ‌ Summary‌  ‌   ‌   ‌   ‌   ‌ 6‌‌|‌‌Natural‌‌Language‌‌Processing‌  ‌ Text‌‌Analytics‌  ‌ Sentiment‌‌analysis‌  ‌ Working‌‌with‌‌dataset‌  ‌ Text‌‌preprocessing‌  ‌ Stemming‌‌and‌‌Lemmatization‌  ‌ Sentiment‌‌classification‌‌using‌‌Naive‌‌Bayes‌  ‌ TF-IDF‌  ‌ N-gram‌  ‌ Building‌‌a‌‌text‌‌classifier‌  ‌ Identifying‌‌the‌‌gender‌  ‌ 10 Summary‌  ‌ Speech‌‌Recognition‌  ‌ Understanding‌‌Audio‌‌Signals‌  ‌ Transforming‌‌audio‌‌signals‌‌into‌‌the‌‌f requency‌‌domain‌  ‌ Generating‌‌audio‌‌signals‌‌with‌‌custom‌‌parameters‌  ‌ Synthesizing‌‌music‌  ‌ Extracting‌‌f requency‌‌domain‌‌features‌  ‌ Building‌‌Hidden‌‌Markov‌‌Models‌  ‌ Building‌‌a‌‌speech‌‌recognizer‌  ‌ Summary‌  ‌             ‌ ‌ ‌ ‌ ‌ ‌ 7‌‌|‌‌Computer‌‌Vision‌‌with‌‌PyTorch‌  ‌ Neural‌‌Networks‌  ‌ Introduction‌  ‌ Building‌‌a‌‌perceptron‌  ‌ Building‌‌a‌‌single‌‌layer‌‌neural‌‌network‌  ‌ Building‌‌a‌‌deep‌‌neural‌‌network‌  ‌ Building‌‌a‌‌recurrent‌‌neural‌‌network‌‌for‌‌sequential‌‌data‌‌   analysis‌  ‌ Visualizing‌‌the‌‌characters‌‌in‌‌an‌‌optical‌‌character‌‌   recognition‌‌database‌  ‌ Building‌‌an‌‌optical‌‌character‌‌recognizer‌‌using‌‌neural‌‌   networks‌  ‌ Summary‌  ‌ Convolutional‌‌Neural‌‌Networks‌  ‌ Introducing‌‌the‌‌CNN‌  ‌ Understanding‌‌the‌‌ConvNet‌‌topology‌  ‌ Understanding‌‌convolution‌‌layers‌  ‌ Understanding‌‌pooling‌‌layers‌  ‌ Training‌‌a‌‌ConvNet‌  ‌ Putting‌‌it‌‌all‌‌together‌  ‌ Applying‌‌a‌‌CNN‌  ‌ Summary‌  ‌ Image‌‌Content‌‌Analysis‌  ‌ Introduction‌  ‌ Operating‌‌on‌‌images‌‌using‌‌OpenCV-Python‌  ‌ Detecting‌‌edges‌  ‌ Histogram‌‌equalization‌  ‌ Detecting‌‌corners‌  ‌ Detecting‌‌SIFT‌‌feature‌‌points‌  ‌ Building‌‌a‌‌Star‌‌feature‌‌detector‌  ‌ Building‌‌an‌‌object‌‌recognizer‌  ‌ Summary‌  ‌ Biometric‌‌Face‌‌Recognition‌  ‌ Introduction‌  ‌ Capturing‌‌and‌‌processing‌‌video‌‌f rom‌‌a‌‌webcam‌  ‌ Building‌‌a‌‌face‌‌detector‌‌using‌‌Haar‌‌cascades‌  Building‌‌eye‌‌and‌‌nose‌‌detectors‌  ‌ Performing‌‌Principal‌‌Components‌‌Analysis‌  ‌ Performing‌‌Kernel‌‌Principal‌‌Components‌‌Analysis‌  ‌ Performing‌‌blind‌‌source‌‌separation‌  ‌ Building‌‌a‌‌face‌‌recognizer‌  ‌ Summary‌  ‌   ‌   ‌ Integration‌‌with‌‌Web‌‌Apps‌  ‌ Understanding‌‌Flask‌  ‌ Recalling‌‌HTML‌‌CSS‌‌JavaScript.‌  ‌ Integrate‌‌Flask‌‌and‌‌Machine‌‌Learning‌  ‌ Deployment‌  ‌ Flask‌  ‌ Heroku‌  ‌ Extra‌‌Projects‌‌    ‌ Breast‌‌Cancer‌‌Classification‌‌using‌‌Scikit‌‌Learn‌  ‌ Fashion‌‌Class‌‌classification‌‌using‌‌TensorFlow‌‌and‌‌PyTorch‌  ‌ Directing‌‌Customers‌‌to‌‌Subscription‌‌Through‌‌App‌‌   Behavior‌‌Analysis‌  ‌ Minimizing‌‌churn‌‌rate‌‌through‌‌analysis‌‌of‌‌financial‌‌habits.‌  ‌ Credit‌‌Card‌‌f raud‌‌detection.‌  ‌ Live‌‌Sketch‌‌with‌‌Webcam‌‌using‌‌OpenCV‌‌    ‌ Building‌‌Chatbot‌‌with‌‌Deep‌‌Learning.‌  ‌   ‌   ‌   ‌   ‌   ‌ 8‌‌|‌‌Data‌‌Visualization‌‌with‌‌Tableau‌  ‌   ‌ How‌‌to‌‌use‌‌it‌  ‌ Visual‌‌Perception‌  ‌   ‌ Tableau‌  ‌  ‌ What‌‌is‌‌it‌  ‌ How‌‌it‌‌works‌  ‌ Why‌‌Tableau‌  ‌ Installing‌‌Tableau‌  ‌ Connecting‌‌to‌‌Data‌  ‌ Building‌‌charts‌  ‌ Calculations‌  ‌   ‌ Dashboards‌  ‌ Sharing‌‌our‌‌work‌  ‌ Advanced‌‌Charts‌  ‌ Calculated‌‌Fields‌  ‌ Calculated‌‌Aggregations‌  ‌ Conditional‌‌Calculation‌  ‌ Parameterized‌‌Calculation‌  ‌   ‌   ‌   ‌   ‌ 9‌‌|‌‌Structure‌‌Query‌‌Language‌‌(SQL)‌  ‌   ‌   ‌ Setup‌‌SQL‌‌server‌  ‌ Basics‌‌of‌‌SQL‌  ‌ Writing‌‌queries‌  ‌ Data‌‌Types‌  ‌   ‌ Select‌  ‌ Creating‌‌and‌‌deleting‌‌tables‌  ‌ Filtering‌‌data‌  ‌ Order‌  ‌ Aggregations‌  ‌ Truncate‌  ‌   ‌ Primary‌‌Key‌  ‌ Foreign‌‌Key‌  ‌ Union‌  ‌ MySQL‌  ‌   ‌ Complex‌‌Questions‌  ‌ Solving‌‌Interview‌‌Questions‌  ‌   ‌   ‌   ‌ 10‌‌|‌‌Big‌‌Data‌‌and‌‌PySpark‌  ‌   ‌ BigData‌  ‌   ‌ What‌‌is‌‌BigData?‌  ‌ How‌‌is‌‌BigData‌‌applied‌‌within‌‌Business?‌  ‌   ‌ PySpark‌  ‌   ‌ Resilient‌‌Distributed‌‌Datasets‌  ‌ Schema‌   ‌ Lambda‌‌Expressions‌  ‌ Transformations‌  ‌ Actions‌  ‌   ‌ Data‌‌Modeling‌  ‌ Duplicate‌‌Data‌  ‌ Descriptive‌‌Analysis‌‌on‌‌Data‌  ‌ Visualizations‌  ‌   ‌ ML‌‌lib‌  ‌ ML‌‌Packages‌  ‌ Pipelines‌  ‌   ‌ Streaming‌  ‌   ‌ Packaging‌‌Spark‌‌Applications‌  ‌   ‌   ‌ 11‌‌|‌‌Development‌‌Operations‌‌with‌‌Azure,‌‌GCP‌‌or‌‌   AWS‌  ‌   ‌ Foundation‌‌of‌‌Data‌‌Systems‌  ‌ Data‌‌Models‌  ‌ Storage‌  ‌ Encoding‌  ‌   ‌ Distributed‌‌Data‌  ‌ Replication‌  ‌ Partitioning‌  ‌   ‌ Derived‌‌Data‌  ‌ Batch‌‌Processing‌  ‌ Stream‌‌Processing‌  ‌   ‌ Microsoft‌‌Azure‌  ‌ Azure‌‌Data‌‌Workloads‌  ‌ Azure‌‌Data‌‌Factory‌  ‌ Azure‌‌HDInsights‌  ‌ Azure‌‌Databricks‌  ‌ Azure‌‌Synapse‌‌Analytics‌  ‌ Relational‌‌Database‌‌in‌‌Azure‌  ‌ Non-relational‌‌Database‌‌in‌‌Azure‌  ‌ 12‌‌|‌‌Five‌‌Major‌‌Projects‌‌and‌‌Git‌  ‌   ‌ Git‌‌-‌‌Version‌‌Control‌‌System‌  ‌   ‌ We‌‌follow‌‌project-based‌‌learning‌‌and‌‌we‌‌will‌‌work‌‌on‌‌all‌‌the‌‌   projects‌‌in‌‌parallel.‌  ‌   ‌   ‌ Join‌‌the‌‌Data‌‌Science‌‌&‌‌ML‌‌Full‌‌Stack‌‌    ‌ WhatsApp‌‌Group‌‌here:‌  ‌  ‌ https://chat.whatsapp.com/IzkKGbimpB50Sxyg2mgn6E‌  ‌   ‌   ‌ Connect‌‌with‌‌me‌‌on‌‌these‌‌platforms:‌  ‌   ‌ Twitter:‌h ‌ ttps://twitter.com/hemansnation‌  ‌   ‌ LinkedIn:‌h ‌ ttps://www.linkedin.com/in/hemansnation/‌  ‌   ‌ GitHub:‌h ‌ ttps://github.com/hemansnation‌  ‌   ‌ Instagram:‌h ‌ ttps://www.instagram.com/masterdexter.ai/‌  ‌   ‌   ‌   ‌ Contact‌‌for‌‌any‌‌Query‌‌:‌‌+91‌‌9074919189‌  ‌   ‌ End‌‌of‌‌Document‌   ‌

Ngày đăng: 29/08/2022, 22:06