Data Science Machine Learning Full Stack Roadmap Himanshu Ramchandani M Tech | Data Science The Roadmap is divided into 12 Sections Duration 100 Hours (4 to 5 Months) 1 Python Programming and Logic Bu.
DataScience MachineLearning FullStackRoadmap HimanshuRamchandani M.Tech|DataScience TheRoadmapisdividedinto12Sections Duration:100Hours(4to5Months) 1.PythonProgrammingandLogicBuilding 2.DataStructure&Algorithms 3.PandasNumpyMatplotlib 4.Statistics 5.MachineLearning 6.NaturalLanguageProcessing 7.ComputerVision 8.DataVisualizationwithTableau 9.StructureQueryLanguage(SQL) 10.BigDataandPySpark 11.DevelopmentOperationswithAzure 12.FiveMajorProjectsandGit TechnologyStack Python DataStructures NumPy Pandas Matplotlib Seaborn Scikit-Learn Statsmodels NaturalLanguageToolkit(NLTK) PyTorch OpenCV Tableau StructureQueryLanguage(SQL) PySpark AzureFundamentals AzureDataFactory Databricks 5MajorProjects GitandGitHub 1|PythonProgrammingandLogicBuilding Basics 01 Variables 02 Printfunction 03 Inputf romuser 04 DataTypes a Numbers b Strings c Lists d Dictionaries e Tuples f Sets g OtherTypes 05 Operators a ArithmeticOperators b RelationalOperators c BitwiseOperators d LogicalOperators 06 Typeconversion ControlStatements IfElse a If b Else c ElseIf d IfElseTernaryExpression WhileLoops a NestedWhileLoops b Break c Continue d pass e Loopelse Lists ListBasics ListOperations ListComprehensions ListMethods Strings StringBasics StringLiterals StringOperations StringComprehensions StringMethods ForLoops Functions NestedForLoops Break Continue Pass Loopelse Functions Definition Call FunctionArguments DefaultArguments Docstrings Scope SpecialfunctionsLambda,Map,andFilter Recursion FunctionalProgrammingandReferenceFunctions Dictionaries DictionariesBasics Operations Comprehensions DictionariesMethods Tuples TuplesBasics TuplesComprehensions TupleMethods Sets SetsBasics SetsOperations Union Intersection DifferenceandSymmetricDifference FileHandling FileBasics OpeningFiles ReadingFiles WritingFiles EditingFiles Workingwithdifferentextensionsoffile WithStatements ExceptionHandling CommonExceptions ExceptionHandling a Try b Except c Tryexceptelse d Finally e Raisingexceptions f Assertion Object-OrientedProgramming Classes Objects MethodCalls InheritanceandItsTypes Overloading Overriding DataHiding OperatorOverloading RegularExpression BasicREfunctions Patterns MetaCharacters CharacterClasses Modules&Packages Differenttypesofmodules Createyourownmodule BuildingPackages Buildyourownpythonmoduleanddeployitonpip MagicMethods Dunders OperatorMethods 2|DataStructure&Algorithms AnalysisofAlgorithms Typesofanalysis AsymptoticNotations BigO Omega Theta RecursionandBacktracking Stack Queue CircularQueue Trees LinkedLists InsertionwithStack InsertionwithQueue Deletion Sorting BubbleSort|SelectionSort|InsertionSort|QuickSort MergeSort Searching LinearSearch|BinarySearch 3|PandasNumpyMatplotlib Numpy UnderstandingNumpy Basicworking Workingwithdimensionsandmatrix StatisticsbasicsMainlydescriptive Linearalgebraoperations Pandas Dataframebasics Differentwaysofcreatingadataf rame Read-writetoexcel Handlingmissingvalues Groupingdata MergingandConcatdataf rames Matplotlib Introduction Formattingstrings Legend,grid,axis,labels Barchart Histogram Piechart 4|Statistics DescriptiveStatistics MeasureofFrequencyandCentralTendency MeasureofDispersion ProbabilityDistribution GaussianNormalDistribution SkewnessandKurtosis HypothesisTesting TypeIandTypeIIerrors t-Testanditstypes RegressionAnalysis ContinuousandDiscreteFunctions GoodnessofFit NormalityTest ANOVA Homoscedasticity LinearandNon-LinearRelationshipwithRegression InferentialStatistics t-Test z-Test Hypothesis OnewayANOVA TwowayANOVA Chi-SquareTest Implementationofcontinuousandcategoricaldata 5|MachineLearning LinearRegression SimpleLinearRegression a Evaluatingthefitnessofthemodelwithacost function b SolvingOLSforsimplelinearregression c Evaluatingthemodel MultipleLinearRegressionPolynomialregression Applyinglinearregression Exploringthedata Fittingandevaluatingthemodel Gradientdescent WorkingwithDifferentdatasets. Howtoapproachdatascienceproblems Datasets a HousePricePrediction b SalarypredictionbasedonGMATscore c PredictingthesoldpriceofplayersinIPL 10 Summary LogisticRegression LogisticRegression BinaryClassification PerformanceMatrix Accuracy PrecisionandRecall F1measure ROCAUC HowtoapproachClassificationproblems Datasets a PredictingInsurance b Spamfiltering c DigitClassification d TitanicDataset 10 Summary DecisionTree DecisionTree NonlinearClassificationandRegression Trainingdecisiontrees Selectingthequestions Informationgain Giniimpurity ImplementationwithScikit-learn Workingwithdatasets a SalaryPrediction Summary RandomForest Ensemble Bagging Bosting Stacking Fastparameteroptimizationwithrandomizedsearch Datasets Summary NaiveBayes NaiveBayesmathematicalconcept Bayes'theorem Generativeanddiscriminativemodels NaiveBayes AssumptionsofNaiveBayes Solvingdatasetwithproblems Summary UnderstandingInterviewquestions DataScienceandMachineLearninginterviewquestionswith answers. SupportVectorMachines SupportVectorMachines LinearSVMClassification NonlinearSVMClassification a PolynomialKernel b AddingSimilarityFeatures SVMRegression a UndertheHood Hyperparameteroptimization Summary MachineLearningAdvancedConcepts GradientDescent GDforLinearRegression StepsforBuildingMachineLearningModels MeasuringAccuracy Bias-VarianceTrade-off ApplyingRegularization RidgeRegression LASSORegression ElasticNetRegression 10 PredictiveAnalytics 11 ExploratoryDataAnalysis. Clustering Howclusteringworks EuclideanDistance K-meansclustering Featurenormalization Workingwithdatasets Clusterinterpretation Summary RecommendationSystems Associationrules Collaborativefiltering Similarities Surpriselibrary BuildingRecommendationEngine Euclideandistancescore Pearsoncorrelationscore Generatingmovierecommendations Summary 6|NaturalLanguageProcessing TextAnalytics Sentimentanalysis Workingwithdataset Textpreprocessing StemmingandLemmatization SentimentclassificationusingNaiveBayes TF-IDF N-gram Buildingatextclassifier Identifyingthegender 10 Summary SpeechRecognition UnderstandingAudioSignals Transformingaudiosignalsintothef requencydomain Generatingaudiosignalswithcustomparameters Synthesizingmusic Extractingf requencydomainfeatures BuildingHiddenMarkovModels Buildingaspeechrecognizer Summary 7|ComputerVisionwithPyTorch NeuralNetworks Introduction Buildingaperceptron Buildingasinglelayerneuralnetwork Buildingadeepneuralnetwork Buildingarecurrentneuralnetworkforsequentialdata analysis Visualizingthecharactersinanopticalcharacter recognitiondatabase Buildinganopticalcharacterrecognizerusingneural networks Summary ConvolutionalNeuralNetworks IntroducingtheCNN UnderstandingtheConvNettopology Understandingconvolutionlayers Understandingpoolinglayers TrainingaConvNet Puttingitalltogether ApplyingaCNN Summary ImageContentAnalysis Introduction OperatingonimagesusingOpenCV-Python Detectingedges Histogramequalization Detectingcorners DetectingSIFTfeaturepoints BuildingaStarfeaturedetector Buildinganobjectrecognizer Summary BiometricFaceRecognition Introduction Capturingandprocessingvideof romawebcam BuildingafacedetectorusingHaarcascades Buildingeyeandnosedetectors PerformingPrincipalComponentsAnalysis PerformingKernelPrincipalComponentsAnalysis Performingblindsourceseparation Buildingafacerecognizer Summary IntegrationwithWebApps UnderstandingFlask RecallingHTMLCSSJavaScript. IntegrateFlaskandMachineLearning Deployment Flask Heroku ExtraProjects BreastCancerClassificationusingScikitLearn FashionClassclassificationusingTensorFlowandPyTorch DirectingCustomerstoSubscriptionThroughApp BehaviorAnalysis Minimizingchurnratethroughanalysisoffinancialhabits. CreditCardf rauddetection. LiveSketchwithWebcamusingOpenCV BuildingChatbotwithDeepLearning. 8|DataVisualizationwithTableau Howtouseit VisualPerception Tableau Whatisit Howitworks WhyTableau InstallingTableau ConnectingtoData Buildingcharts Calculations Dashboards Sharingourwork AdvancedCharts CalculatedFields CalculatedAggregations ConditionalCalculation ParameterizedCalculation 9|StructureQueryLanguage(SQL) SetupSQLserver BasicsofSQL Writingqueries DataTypes Select Creatinganddeletingtables Filteringdata Order Aggregations Truncate PrimaryKey ForeignKey Union MySQL ComplexQuestions SolvingInterviewQuestions 10|BigDataandPySpark BigData WhatisBigData? HowisBigDataappliedwithinBusiness? PySpark ResilientDistributedDatasets Schema LambdaExpressions Transformations Actions DataModeling DuplicateData DescriptiveAnalysisonData Visualizations MLlib MLPackages Pipelines Streaming PackagingSparkApplications 11|DevelopmentOperationswithAzure,GCPor AWS FoundationofDataSystems DataModels Storage Encoding DistributedData Replication Partitioning DerivedData BatchProcessing StreamProcessing MicrosoftAzure AzureDataWorkloads AzureDataFactory AzureHDInsights AzureDatabricks AzureSynapseAnalytics RelationalDatabaseinAzure Non-relationalDatabaseinAzure 12|FiveMajorProjectsandGit Git-VersionControlSystem Wefollowproject-basedlearningandwewillworkonallthe projectsinparallel. JointheDataScience&MLFullStack WhatsAppGrouphere: https://chat.whatsapp.com/IzkKGbimpB50Sxyg2mgn6E Connectwithmeontheseplatforms: Twitter:h ttps://twitter.com/hemansnation LinkedIn:h ttps://www.linkedin.com/in/hemansnation/ GitHub:h ttps://github.com/hemansnation Instagram:h ttps://www.instagram.com/masterdexter.ai/ ContactforanyQuery:+919074919189 EndofDocument