Song, trong thực tế điều đó là không thể xảy ra, tín hiệu sẽ bị thay đổi trong suốt quá trình truyền, tín hiệu thu được sẽ là sự kết hợp các thành phần khác nhau: tín hiệu suy giảm, khúc
Trang 1Luận văn
HỆ THỐNG MẠNG DI ĐỘNG WCDMA
Trang 2CHƯƠNG 1
HỆ THỐNG MẠNG DI ĐỘNG WCDMA
Giới thiệu chung
Trong những năm gần đây, công nghệ không dây là chủ đề được nhiều chuyên gia quan tâm trong lĩnh vực máy tính và truyền thông Trong thời gian này công nghệ này được rất nhiều người sử dụng và đã trải qua rất nhiều thay đổi Quá trình thay đổi thể hiện qua các thế hệ:
Thế hệ không dây thứ nhất là thế hệ thông tin tương tự sử dụng công nghệ
đa truy cập phân chia theo tần số (FDMA)
Thế hệ thứ 2 sử dụng kỹ thuật số với công nghệ đa truy cập phân chia theo thời gian (TDMA) và phân chia theo mã (CDMA)
Thế hệ thứ 3 ra đời đánh giá sự nhãy vọt nhanh chóng về cả dung lượng và ứng dụng so với các thế hệ trước đó, và có khả năng cung cấp các dịch vụ đa phơng tiện gói
1.1 Hệ thống thông tin di động thế hệ 1
Hệ thống thông tin di động thế hệ 1 chỉ hổ trợ các dịch vụ thoại tương tự và sử
dụng kỹ thuật điều chế tương tự để mang dữ liệu thoại của mỗi người, và sử dụng phương pháp đa truy cập phân chia theo tần số (FDMA) Với FDMA, khách hàng được cấp phát một kênh trong tập hợp có trật tự các kênh trong lĩnh vực tần số Sơ
đồ báo hiệu của hệ thống FDMA khá phức tạp, khi MS bật nguồn để hoạt động thì
nó dò sóng tìm đến kênh điều khiển dành riêng cho nó Nhờ kênh này, MS nhận được dữ liệu báo hiệu gồm các lệnh về kênh tần số dành riêng cho lưu lượng người dùng Trong trường hợp số thuê bao nhiều hơn số lượng kênh tần số có thể, thì một
số người bị chặn lại không được truy cập
Phổ tần số quy định cho liên lạc di động được chia thành 2N dải tần số kế tiếp, và được cách nhau bởi một dải tần số phòng vệ Mỗi dải tần số được gán cho một kênh liên lạc N dải kế tiếp dành riêng cho liên lạc hướng lên, sau một dải tần phân cách là N dải kế tiếp dành riêng cho liên lạc hướng xuống
Trang 3- BTS phải có bộ thu phát riêng làm việc với mỗi MS
Hệ thống FDMA điển hình là hệ thống điện thoại di động AMPS (Advanced Mobile Phone System) Hệ thống di động này sử dụng phương pháp đa truy cập đơn giản Tuy nhiên, hệ thống không thoả mãn nhu cầu ngày càng tăng của người dùng về cả dung lượng và tốc độ Vì thế, hệ thống di động thứ 2 ra đời được cải thiện về cả dung lượng và tốc độ
1.2 Hệ thống thông tin di động thế hệ 2
Với sự phát triển nhanh chóng của thuê bao, hệ thống thông tin di động thế hệ 2 được đưa ra để đáp ứng kịp thời số lượng lớn các thuê bao di động dựa trên công nghệ số
Tất cả hệ thống thông tin di động thế hệ 2 sử dụng phương pháp điều chế số và sử dụng 2 phương pháp đa truy cập :
- Đa truy cập phân chia theo thời gian TDMA
- Đa truy cập phân chia theo mã CDMA
Đa truy cập phân chia theo thời gian TDMA:
Phổ quy định cho liên lạc di động được chia thành các dải tần liên lạc, mỗi dải tần liên lạc này được dùng cho N kênh liên lạc, mỗi kênh liên lạc là một khe thời gian trong chu kì một khung Các thuê bao khác nhau dùng chung kênh nhờ cài xen khe thời gian, mỗi thuê bao được cấp phát cho một khe thời gian trong cấu trúc khung
Đặc điểm:
- Tín hiệu của thuê bao được truyền dẫn số
- Liên lạc song công mỗi hướng thuộc các dải tần liên lạc khác nhau, trong
đó một băng tần được sử dụng để truyền tín hiệu từ trạm gốc đến các máy di động
và một băng tần được sử dụng để truyền tín hiệu từ máy di động đến trạm gốc Việc phân chia tần số như vậy cho phép các máy thu và máy phát có thể hoạt động cùng một lúc mà không có sự can nhiễu lẩn nhau
- Giảm số máy thu ở BTS
- Giảm nhiểu giao thoa
Hệ thống TDMA điển hình là hệ thống di động toàn cầu GSM Máy di động kỹ thuật số TDMA phức tạp hơn FDMA Hệ thống xử lý số đối với tín hiệu trong MS tương tự có khả năng xử lý không quá 106 lệnh trong 1 giây, còn trong MS số TDMA phải có khả năng xử lý 50.106 lệnh trong 1 giây
Đa truy cập phân chia theo mã CDMA:
Trong thông tin di động CDMA sử dụng kỹ thuật trải phổ cho nên nhiều người sử dụng có thể chiếm cùng kênh vô tuyến đồng thời tiến hành các cuộc gọi mà không
Trang 4sợ gây nhiễu lẫn nhau Những người sử dụng nói trên được phân biệt với nhau nhờ
mã trải phổ giả ngẫu nhiên PN, được cấp phát khác nhau cho mỗi người sử dụng
1.3 Hệ thống thông tin di động thế hệ 3:
Để đáp ứng kịp thời các dịch vụ ngày càng phong phú và đa dạng của người sử dụng, từ đầu thập niên 90 người ta đưa ra hệ thống thông tin di động tổ ong thế hệ thứ 3 Hệ thống thông tin di động thế hệ 3 với tên gọi ITM-2000 đưa ra các muc tiêu chính sau:
- Tốc độ truy nhập cao để đảm bảo các dịch vụ băng rộng như truy cập Internet nhanh hoặc các dịch vụ đa phương tiện
- Linh hoạt để đảm bảo các dịch vụ mới như đánh số cá nhân và điện thoại vệ tinh Các tính năng này sẽ cho phép mở rộng đáng kể tầm phủ sóng của các hệ thống thông tin di động
- Tương thích với các hệ thống thông tin di động hiện có để đảm bảo sự phát triển liên tục của thông tin di động
3G hứa hẹn tốc độ truyền dẫn lên tới 2.05 Mbps cho người dùng tĩnh , 384 Kbps cho người dùng di chuyển chậm và 128 Kbps cho người dùng trên moto Công nghệ 3G dùng sóng mang 5MHz chứ không phải là sóng mang 200KHz như của CDMA nên 3G nhanh hơn rất nhiều so với công nghệ 2G và 2,5G Nhiều tiêu chuẩn cho hệ thống thông tin di động thế hệ 3 ITM-2000 đã được đề xuất, trong đó 2 hệ thống WCDMA và cdma-2000 đã được ITU chấp thuận và đang được áp dụng trong những năm gần đây Các hệ thống này đều sử dụng công nghệ CDMA, điều này cho phép thực hiện tiêu chuẩn toàn thế giới cho giao diện thông tin vô tuyến
1.4 Lộ trình phát triển từ hệ thống thông tin di động thế hệ 2 (GSM) lên WCDMA
Trang 5Để đảm bảo ứng dụng được các dịch vụ mới về truyền thông máy tính và hình ảnh đồng thời đảm bảo tính kinh tế , hệ thống thông tin di động thế hệ 2 sẽ được chuyển đổi sang thế hệ 3 Quá trình đó được tổng quát trên hình 1.1
Lộ trình phát triển từ GSM lên WCDMA như sau:
GPRS: General Packet Radio Services: Dịch vụ gói vô tuyến chung
WCDMA: Wideband Code Division Multiple Access: Đa truy cập phân chia theo mã băng rộng
1.5 Tổng quan về mạng WCDMA
WCDMA (Wideband Code Division Multiple Access: Đa truy cập phân chia
theo mã băng rộng) là một trong những hệ thống thông tin di động thế hệ 3, sử dụng công nghệ CDMA Công nghệ CDMA ( Code Division Multiple Access: Đa truy cập phân chia theo mã), là một công nghệ không dây, số sử dụng kỹ thuật trải phổ
để phân tần tín hiệu vô tuyến trong một dãi tần số rộng Trong công nghệ CDMA, nhiều người sử dụng chung một thời gian và tần số Mã PN (giả ngẫu nhiên) với sự tương quan chéo thấp, được ấn định cho mỗi người sử dụng Người sử dụng truyền tín hiệu nhờ trải phổ tín hiệu truyền có sử dụng mã PN đã ấn định Đầu thu tạo ra một dãy PN như đầu phát và khôi phục lại tín hiệu dự định nhờ việc trải phổ ngược các tín hiệu đồng bộ thu được Cũng giống như TDMA, WCDMA là một trong nhiều công nghệ chủ đạo để mạng thông tin di động hoạt động Nó cũng được biết như là một giao diện vô tuyến hay công nghệ đa truy xuất WCDMA là một giao diện vô tuyến phức tạp và tiên tiến trong lĩnh vực thông tin di động WCDMA có 2 chế độ khác nhau là FDD và TDD Khả năng làm việc được ở cả hai chế độ FDD và TDD cho phép sử dụng hiệu quả phổ tần được cấp phát ở các vùng khác nhau
FDD (Frequency Division Duplex): là phương pháp ghép song công trong đó truyền dẫn đường lên và đường xuống sử dụng hai tần số riêng biệt Ở FDD đường
Hình 1.2 Lộ trình phát triển từ GSM lên WCDMA
Trang 6lên và đường xuống sử dụng hai băng tần khác nhau Hệ thống được phân bố một cặp băng tần riêng biệt
TDD (Time Division Duplex): là phương pháp ghép song công trong đó đường lên và đường xuống được thực hiện trên cùng một tần số bằng cách sử dụng những khe thời gian luân phiên Ở TDD các khe thời gian trong các kênh vật lý được chia thành hai phần : phần phát và phần thu Thông tin đường xuống và đường lên được truyền dẫn luân phiên
1900 1920 1980 2020 2025 2110 2170 (MHz) TDD
RX/TX
FDD
Uplink
TDD RX/TX
FDD Downlink
Khả năng làm việc của cả hai chế độ FDD và TDD cho phép sử dụng hiệu quả phổ tần được cấp phát ở các vùng khác nhau
Ba thông số cơ bản của mạng WCDMA:
Lớp truy nhập: được tạo ra bởi các trạm gốc (node B) và các bộ điều khiển mạng vô tuyến khác nhau để phân tích và điều khiển lưu lượng vô tuyến
Mạng lõi có hai vai trò chính :
Giải quyết việc định hướng hay định tuyến đến nơi mà cuộc gọi hoặc số liệu gửi đến Phương tiện cơ bản là sử dụng hệ thống chuyển mạch để định tuyến thông tin qua một số máy chủ khác nhau xung quanh mạng
Là một mạng đường trục và giải quyết các chức năng kỹ thuật, khả năng truy nhập thuận tiện tới mạng số liệu gói khác, cung cấp một giao diện với Internet và phân loại thông tin tính cước và bảo mật
Lớp dịch vụ điều khiển các ưu tiên, các đặc tính và khả năng truy nhập cơ bản của thuê bao tới các dịch vụ nâng cao đã làm cho 3G có một vị trí tuyệt vời
f
5MHz
Đường lên
Đường xuống
Đường lên
Đường xuống
Trang 71.5.1 Các thông số chính của W-CDMA
WCDMA là một phương pháp đa truy xuất vô tuyến phân chia theo mã trải phổ trực tiếp dải rộng, nghĩa là các bit thông tin của các user được trải đều ra trên một dải thông rộng bằng việc nhân dữ liệu của user với các mã ngẫu nhiên (gọi là chip) nhận được trải phổ trong WCDMA
Tốc độ chip 3.84Mcps được sử dụng cho ghép dải thông sóng mang xấp xỉ tới 5MHz Dải thông sóng mang của WCDMA rộng như thế gắn liền với tốc độ dữ liệu của uesr cao và còn có hiệu quả nâng cao khả năng phân tập tần số Các nhà quản lý mạng có thể tăng dung lượng nhờ dải thông của sóng mang là 5MHz Khoảng cách các sóng mang có thể chọn trên những khoảng 200KHz giữa khoảng 4.4 đến 5MHz tuỳ thuộc vào nhiễu giữa các sóng mang
WCDMA cung cấp tốc độ khả biến cho các user rất cao, hiểu theo cách khác chính là dải thông theo yêu cầu cũng được cung cấp Mỗi user được cung cấp một khung giây có chu kỳ 10ms trong khi tốc độ dữ liệu vẫn giữ nguyên không đổi Tuy nhiên dung lượng dữ liệu có thể thay đổi từ khung này đến khung khác
WCDMA cung cấp hai chế độ hoạt động cơ bản là FDD và TDD Trong FDD các khoảng tần số sóng mang 5MHz được sử dụng cho sóng mang hướng lên
và hướng xuống riêng rẽ, trong khi đó TDD chỉ có một khoảng 5MHz được dùng cho cả hướng lên và hướng xuống
WCDMA cung cấp hoạt động bất đồng bộ cho các trạm gốc và do đó không giống như hệ thống đồng bộ IS-95 CDMA, nó không cần thời gian chuẩn trên toàn cầu GPS
WCDMA dùng tách sóng kết hợp cho hướng lên và hướng xuống nhờ các ký hiệu hoa tiêu hay kênh hoa tiêu chung, dẫn tới tăng dung lượng và vùng phủ sóng
WCDMA được thiết kế để phát triển nâng cấp cho chuẩn GSM vì vậy có thể chuyển giao giữa mạng GSM và mạng WCDMA
Phương thức đa truy xuất DS-CDMA
Phương pháp ghép song công FDD/TDD
Đồng bộ trạm gốc Hoạt động bất đồng bộ
Ghép dịch vụ Đa dịch vụ với yêu cầu chất lượng dịch vụ
khác nhau được ghép trên một kết nối
Tách sóng Tách sóng kết hợp nhờ sử dụng kênh hoa
tiêu
Trang 81.5.2 Những đặc điểm then chốt của WCDMA
Giao diện vô tuyến trên cơ sở CDMA băng rộng tạo cơ hội thiết kế hệ thống có những đặc tính đáp ứng nhu cầu của thế hệ thứ 3 Những đặc điểm chủ yếu trong hệ thống WCDMA là :
Cải thiện những hệ thống thế hệ thứ 2 bao gồm: cải thiện dung lượng, cải thiện vùng phủ sóng, bao gồm cả khả năng di chuyển những dịch vụ thế hệ thứ 2 sang thế hệ thứ 3
Tính linh hoạt cao của dịch vụ bao gồm: Có các dịch vụ tốc độ bit cực đại trên 2 Mb/s và các dịch vụ ghép song song trên một kết nối
Thực hiện truy nhập gói hiệu quả và tin cậy
Tính linh hoạt cao của vận hành bao gồm: Hỗ trợ hoạt động không đồng bộ giữa các trạm gốc nên triển khai thuận lợi trong nhiều môi trường Hỗ trợ một cách
có hiệu quả dạng hoạt động khác chẳng hạn cấu trúc ô có bậc Sử dụng kỷ thuật tiến
bộ như phối hợp anten dàn và tách người dùng Mô hình TDD được thiết kế để hoạt động hiệu quả trong môi trường không kết hợp
Cải thiện dung lượng: Độ rộng băng tần lớn của WCDMA làm tăng hiệu suất vốn có trên các hệ thống tế bào trước đó do nó làm giảm fading của tín hiệu vô tuyến Ta biết rằng WCDMA sử dụng điều chế kết hợp ở đường lên, đây là tính năng không thể thực hiện được ở trong các hệ thống CDMA tế bào Điều khiển công suất chắc chắn ở đường xuống sẽ có hiệu suất hoàn hảo, đặc biệt ở môi trường trong nhà và môi trường ngoài trời có tốc độ thấp
Nói chung, đối với dịch vụ thoại, sự cải thiện này là một bước tiến vì đây là một trong hai yếu tố làm tăng dung lượng cell của WCDMA
1.5.3 Ảnh hưởng của nhiễu lên hệ thống WCDMA
Trong kênh thông tin vô tuyến lý tưởng, tín hiệu thu được chỉ bao gồm một tín hiệu đến trực tiếp Song, trong thực tế điều đó là không thể xảy ra, tín hiệu sẽ bị thay đổi trong suốt quá trình truyền, tín hiệu thu được sẽ là sự kết hợp các thành phần khác nhau: tín hiệu suy giảm, khúc xạ, nhiễu xạ của các tín hiệu khác…WCDMA là hệ thống di động vô tuyến nên sẽ bị ảnh hưởng bởi điều đó Sau đây là mô hình của hai loại nhiễu chính, đó là nhiễu fadinh nhiều tia và nhiễu giao thoa
Trang 9Hình 1.4 Các tín hiệu đa đường
Hình 1.5 Các tín hiệu nhiễu giao thoa
Để làm giảm các ảnh hưởng của các loại nhiễu trên, trong WCDMA có nhiều kỹ thuật xử lý đó là: mã hoá kênh, điều chế, trải phổ, phân tập…Trong đồ án này ta sẽ
đi nghiên cứu các kỹ thuật phân tập tín hiệu
1.5.4 Tính đa dạng phân tập trong WCDMA
Trong hệ thống điều chế băng hẹp như điều chế FM tương tự ,sử dụng trong hệ thống thông tin di động tổ ong đầu tiên thì tính đa đường tạo nên fading nghiêm trọng Tính nghiêm trọng của đa đường fading được giảm đi trong điều chế CDMA băng rộng ,vì các tín hiệu qua các đường khác nhau được thu nhận một cách độc lập Nhưng hiện tượng đa đường xảy ra một cách liên tục trong hệ thống này do fading
đa đường không thể loại trừ hoàn toàn được vì với các hiện tượng fading xảy ra một cách liên tục đó thì bộ điều chế không thể xử lí tín hiệu thu một cách độc lập được Phân tập là một hình thức tốt để làm giảm fading,có 3 loại phân tập là theo tần số ,theo thời gian và theo khoảng cách Phân tập theo thời gian đạt được nhờ sử dụng việc chèn và mã sữa sai Phân tập theo thời gian có thể được áp dụng cho tất
cả các hệ thống có tốc độ mã truyền dẫn cao mà thủ tục sửa sai yêu cầu Hệ thống
Trang 10CDMA băng rộng ưứngduụngviệc phân tập theo tần số nhờ việc mở rộng khả năng báo hiệu trong một băng tần rộng và fading liên hợp với tần số thường có ảnh hưởng đến băng tần báo hiệu(200-300kHz) Nhưng với một băng tần rộng thì fading
ít ảnh hưởng đến tín hiệu hơn Phân tập theo khoảng cách hay đường truyền thường đạt được theo 3 phương pháp sau:
-Thiết lập nhiều đường báo hiệu(chuyển vùng mềm) để kết nối máy di động với
2 hoặc nhiều trạm gốc BTS
-Sử dụng môi trường đa đường qua chức năng trải phổ giống như bộ thu quét thu nhận và tổ hợp các tín hiệu phát với các tín hiệu phát khác trễ thời gian
-Đặt nhiều anten tại BS (anten mảng)
Phân tập theo khoảng cách có thể dễ dàng được áp dụng đối với hệ thống TDMA và FDMA Phân tập theo thời gian có thể được áp dụng cho tất cả các hệ thống số có tốc độ mã truyền dẩn cao mà thủ tục sữa sai yêu cầu Phân tập theo tần
số có thể dể dàng được áp dụng cho hệ thống CDMA
Bộ điều khiển đa đường tách dạng sóng nhờ sử dụng bộ tương quan song song Máy di động sử dụng 3 bộ tương quan ,BTS sử dụng 4 bộ tương quan Máy thu có
bộ tương quan song song gọi là máy thu quét (Rake), nó xác định tín hiệu thu theo mỗi đường và tổ hợp, giải điều chế tất cả các tín hiệu thu được Fading có thể xuất hiện ở các đường tín hiệu thu nhưng không có sự tương quan giữa các đường tín hiệu thu.Vì vậy tổng các tính hiệu thu được có độ tin cậy cao vì rất ít có fading đồng thời giữa cá đường tín hiệu thu được
Nhiều bộ tách tương quan có thể áp dụng một cách đồng thời cho hệ thống thông tin có 2 BTS sao cho có thể thực hiện chuyển vùng mềm cho thuê bao di động
Các kỹ thuật phân tập:
Phân tập thời gian: Đây là phương pháp phân tập cơ bản nhất, dùng những khe thời gian tại những thời điểm khác nhau để truyền cùng một tín hiệu ban đầu, như vậy tại đầu thu ta có thể nhận được nhiều bản sao của một tín hiệu tại nhiều thời điểm Hoặc cùng một tín hiệu thu, có thể được thu theo nhiều khoảng thời gian trễ khác nhau để chọn ra được tín hiệu thu tốt nhất
Phân tập tần số: Nguyên lý cơ bản của bất kỳ loại sóng nào (cả sóng cơ và sóng điền từ ) thì chỉ giao thoa với nhau khi có cùng tần số hay vùng tần số lân cận Phân tập tần số dựa vào đặc tính này, dùng nhiều tần số khác nhau để truyền cùng một tín hiệu, như vậy tại đầu thu sẽ thu được cùng một tín hiệu tại nhiều tần số khác nhau
Trang 11 Phân tập không gian ( hay phân tập anten ): Trong kiểu phân tập này chúng
ta dùng nhiều anten đặt tại nhiều vị trí khác nhau, có độ phân cực khác nhau để truyền hay thu cùng một tín hiệu Phương pháp này sẽ không làm mất độ rộng băng thông của hệ thống
Kết luận chương
Chương này đã giới thiệu tổng quan về các thế hệ thông tin di động, đặc biệt là hệ thống WCDMA, các ảnh hưởng của nhiểu trong hệ thống di động Cuối chương là phần giới thiệu về các kỹ thuật phân tập để giảm bớt nhiễu trong hệ thống vô tuyến Trong chương tiếp theo sẽ đi sâu nghiên cứu về kỹ thuật phân tập không gian và thời gian
Trang 12cả hai miền không gian và thời gian Ở đây, xử lý tín hiệu trong miền không gian là tiến hành xử lý tín hiệu bằng cách phân tập anten, còn xử lý tín hiệu trên miền thời gian là tiến hành xử lý tín hiệu thu bằng cách phân tập thời gian Việc kết hợp 2 kỹ thuật phân tập cho tín hiệu sẽ làm tăng chất lượng của tín hiệu tại bộ thu Tuy bộ thu 2-D này có khả năng xử lý tín hiệu đồng thời trên miền không gian và thời gian song điều này đòi hỏi phải có cấp độ tính toán phức tạp Trong chương này chúng
ta sẽ giới thiệu một số giải pháp đơn giản để xử lý tín hiệu trong miền không gian
và thời gian
Mảng anten thích nghi [3] có khả năng chống lại nhiễu fading hay MAI chỉ bằng cách xử lý không gian Khi các thuê bao của hệ thống mạng trao đổi thông tin từ những địa điểm khác nhau, mỗi thuê bao sẽ có một thông tin không gian duy nhất liên quan tới thuê bao đó Mảng anten thích nghi có thể dựa vào đặc tính không gian của tín hiệu để giảm bớt nhiễu MAI Việc xử lý này được thực hiện bởi bộ Beamformer Beamformer có thể là một giải pháp hữu hiệu để cải thiện cho hệ thống CDMA hoạt động tốt trong các kênh tín hiệu giao thoa với nhau Dung lượng của hệ thống CDMA có thể được tăng lên bằng cách giảm bớt nhiễu giao thoa co-channel
2.2 Anten Mảng
Anten mảng là tập hợp gồm nhiều anten thành phần được bố trí tại những vị trí khác nhau trong không gian mảng Các anten thành phần này có thể được sắp xếp theo các cấu trúc hình học bất kỳ Tuỳ theo cách sắp xếp đó mà mảng có thể là mảng đường ,mảng tròn hay mảng phẳng Mảng đường và mảng tròn là trường hợp đặc biệt của mảng phẳng Góc phát xạ của một mảng được xác định dựa vào góc phát xạ của các anten thành phần , vào sự định hướng , vào vị trí của các anten , vào biên độ và pha của tín hiệu đến Nếu các anten của mảng là đẳng hướng thì góc phát
xạ của mảng sẽ chỉ phụ thuộc vào cấu trúc không gian của mảng và tín hiệu đến mảng [3] Trong trường hợp này góc phát xạ của mảng được gọi là hệ số mảng Nếu
Trang 13các phần tử của mảng giống nhau nhưng không đẳng hướng thì góc phát xạ của mảng được tính theo hệ số mảng và các góc phát xạ thành phần
f c : Tần số sóng mang của tín hiệu
γ(t) : Hàm biểu thị sự biến đổi tín hiệu
chậm hơn phần tử thứ nhất một
Hình 2.1 Mảng anten ULA
khoảng thời gian là ,tương tự phần tử thứ N sẽ trễ một khoảng là N Như thế ta
có thể biểu diễn tín hiệu thu được tại các phần tử khác trong mảng theo biểu thức tín hiệu thu được tại phần tử thứ nhất Trong hình vẻ trên ta có thời gian trễ là :
Trang 14x
sin 2 { 1
c d f j
e t x e
t x t
Do đó tín hiệu nhận được tại phần tử thứ i của mảng là (i=1:N)
( ) 1( ). 2 (i1)sin}
d j
e …… 2 (N1)sin}
d j
Vector đáp ứng của mảng là một trường các giá trị phụ thuộc vào góc tín hiệu truyền đến mảng, vào cấu trúc hình học của mảng, cách bố trí các phần tử trong mảng và phụ thuộc vào tần số của tín hiệu đến mảng Chúng ta giả thiết rằng trong phạm vi thay đổi của tần số sóng mang thì Vector đáp ứng của mảng không thay đổi Khi cấu trúc của mảng không thay đổi (ví dụ mảng ULA) và các phần tử của mảng
là đẳng hướng ,thì vector đáp ứng của mảng chỉ phụ thuộc vào AOA (góc tín hiệu đến mảng) Lúc này vector tín hiệu nhận được từ mảng có thể được viết như sau :
Để có được các điều trên thì ta phải giả thiết băng thông của tín hiệu phải nhỏ hơn nhiều lần thời gian truyền tín hiệu qua mảng Giả thiết cho hiện tượng này được gọi là narrowband, tức là các tín hiệu thu được trong các phần tử của mảng sẽ có sự
Trang 15sai pha lẩn nhau ,song sự sai pha này có thể là nhỏ Vì thế mô hình narrowband vẫn chính xác cho những tín hiệu biến thiên dạng hình sin, đặc biệt là ở những tín hiệu
có băng thông rất nhỏ so với thời gian truyền sóng qua mảng Cũng vì lí do đó mà khi thực hiện mô hình Beamformer để giảm thiểu sự giao thoa thì phải nằm trong giới hạn cho phép của hiện tượng narrowband Trong toàn bộ luận văn này chúng ta giả thiết rằng tín hiệu W-CDMA thoả mãn narrowband
Thời gian trễ trong quá trình truyền sóng từ phần tử đầu tiên đến phần tử cuối cùng của mảng được tính như sau :
f
c N
2
) 1 ( 2 ) 1 ( max
10.20002
10.53
Trang 16Hình 2.2a Mô hình Beamformer Hình 2.2b Búp sóng anten dãy
Nếu có tất cả K tín hiệu đến mảng với góc tới của mỗi tín hiệu được xác định riêng biệt Lúc đó vector tín hiệu nhận được có dạng như sau :
( ) ( ) ( ) ( )
1
t n a
t s t
Với s i (t) là tín hiệu nhận được tại phần tử thứ i trong mảng ,góc tới là i
a( i) là vector đáp ứng của mảng ứng với góc tới i
n (t) là vector tín hiệu nhiễu
Đầu ra của bộ Beamformer có dạng sau :
y(t) w H(t)x(t) (2.15)
Với w=[ w 1 w 2 … w N]T là vector trọng số của mảng
Thông thường vector trọng số được chọn để phù hợp cho từng kỷ thuật Beamformer khác nhau Các kỹ thuật Beamformer thường có là MMSE, MSINR, MSNR, CMA, ML…sẽ được đề cập ở các chương sau
2.3.1 Ví dụ đơn giản của bộ Beamformer với mảng ULA
Bây giờ ta chỉ xét một ví dụ thật đơn giản để diển tả nguyên lí của Beamforming Giả thiết rằg tín hiệu của thuê bao truyền đến mảng ULA với góc AOA là 0o , và giả thiết rằng phần tín hiệu nhiễu do giao thoa được thu ở góc AOA
là 45o Vector đáp ứng của mảng cho tín hiệu hữu ích trong trường hợp này là :
1 1
1 )
4
(
2 )
4 sin(
2
1 2 int
j e
e a
a j j
(2.17)
Trang 17Bộ thu Beamformer phải tăng cao hệ số khuếch đại đối với tín hiệu mong muốn đồng thời giảm thiểu tối đa hệ số khuếch đại đối với tín hiệu nhiễu giao thoa Vì thế vector đáp ứng của mảng phải thoả mãn các điều kiện sau :
0
1 int
2478 0 5 0
j
j w
Hàm đặc trưng của Beamformer tương ứng với góc được cho như sau :
ít hơn hay bằng số lượng các phần tử trong mảng Khi mà số phần tử anten là N, thì
có thể null steering N-1 hướng tín hiệu nhiễu khác nhau, song điều này thì không thể phù hợp được trong môi trường hệ thống mạng WCDMA ( với rất nhiều nhiễu giao thoa) Trường hợp số lượng tín hiệu đến mảng vượt quá số phần tử của mảng gọi là overloaded Tuy nhiên quá trình xử lý khuếch đại tín hiệu trong bộ thu của hệ thống CDMA có sự liên kết lớn để chống lại sự quá tải trong mảng, đồng thời việc
bố trí không gian các phần tử của mảng cũng góp phần nâng cao khả năng xử lý của
hệ thống
Trang 18Hình 2.3 Đồ thị bức xạ của anten dãy đối với góc đến tín hiệu là 0 o
và nhiễu giao thoa là 45 o
Từ ví dụ trên ta nhận thấy rằng:
Mặc dầu có thể đặt null trực tiếp đến hướng đến của tín hiệu nhiễu giao thoa, song từ đồ thị bức xạ (hình 2.3) ta thấy độ lợi của anten không cực đại tại hướng đến của tín hiệu hữu ích Như vậy, cần phải có nhiều sự cải tiến trong giải pháp kỹ thuật của beamformer Trong chương sau sẽ đề cập đến các giải pháp kỹ thuật beamformer khác nhau đó
Nếu chúng ta ngầm giả thiết là đã nhận biết được mảng vector đáp ứng cho nhiều users khác nhau Thì trong vùng một cell đô thị, mỗi tín hiệu đa đường sẽ đến mảng với những góc tới khác nhau, vì thế sẽ có rất nhiều hướng giải quyết cho mỗi đường tính hiệu này Trong trườnghợp này, rất khó để xác định chính xác góc tín hiệu đến mảng và như vậy sự đánh giá vector đáp ứng của mảng là rất không xác thực Điều đó cho thấy sự cần thiết phải đánh giá góc đến AOA để tìm ra vector đáp ứng của mảng Ngoài ra kỹ thuật trên cần yêu cầu số lượng tín hiệu đến mảng (bao gồm tín hiệu giao thoa co-channel) phải ít hơn số lượng các phần tử trong mảng Điều này không thể có được trong mạng WCDMA Kỹ thuật Eigen-Beamforming, được xét đến ở phần sau, là giải pháp thích hợp, không cần phải biết được vector đáp ứng của mảng cũng như không cần phải đánh giá rõ ràng góc tới AOA
2.4 Nguyên tắc lấy mẫu tín hiệu trong xử lý không gian
Những nguyên lý lấy mẫu trong miền thời gian có thể được áp dụng trong hệ thống xử lý không gian do giữa hai hệ thống này cũng có sự tương quan với nhau Xét tín hiệu trong miền thời gian và tần số, mẫu tín hiệu lấy theo nguyên tắc lấy mẫu Nyquist Tức là, tín hiệu được lấy mẫu với tần số (tốc độ lấy mẫu) lớn hơn 2
Trang 19lần tần số lớn nhất của tín hiệu Trường hợp tần số lấy mẫu nhỏ hơn 2f được gọi là
aliasing Tương tự trong miền không gian, để tránh hiện tượng aliasing thì khối beamformer phải thoã mãn điều kiện sau :
2.5 Lợi ích của phân tập không gian
Một mãng anten thích nghi có thể có được nhiều cấu trúc không gian khác nhau
và làm giảm được nhiễu fading nhiều tia Mảng này có khả năng lái búp sóng của mảng về phía tín hiệu cần nhận và tránh hướng đến của tín hiệu nhiễu Tín hiệu thu được tại các phần tử trong mảng có rất ít sự tương quan lẫn nhau Vì thế nếu tín hiệu tại một phần tử của mảng là tín hiệu nhiễu fading, tín hiệu này sẽ khác nhiều tín hiệu thu được tại các phần tử khác trong cùng thời gian đó Vì thế luôn có một tín hiệu tốt nhất thu được một trong các phần tử của mảng Nên việc tổ hợp các tín hiệu thu được từ các phần tử trong mảng sẽ làm tăng tỷ số SNR và tăng độ trung thực của tín hiệu thu
2.6 Phân tập thời gian: Bộ thu Rake trong CDMA
Trong một kênh có chọn lọc tần số ,có nhiều bản sao tín hiệu được truyền đến máy thu, chúng đi qua nhiều đường khác nhau Những bản tin sao chép này được tổng hợp lại tại đầu thu để cải thiện tỷ số tín hiệu trên nhiễu SNR Khi các tín hiệu này được truyền theo nhiều đường khác nhau, sẽ có một đường truyền không (hoặc ít) chịu ảnh hưởng bởi nhiễu fading Điều này có nghĩa là nếu mỗi đường truyền đều bị ảnh hưởng bởi fading, các tín hiệu đi theo các đường khác nhau sẽ có sự khác biệt rõ rệt Tại đầu thu sẽ luôn thu được một kênh tín hiệu có độ trung thực chấp nhận được Trong hệ thống CDMA, bộ thu tín hiệu có thể chứa nhiều thiết bị tương quan nhau để phân chia tín hiệu thành nhiều bản giống nhau và làm giảm nhiễu fading Bộ thu này được gọi là bộ thu Rake, nó đã được dùng nhiều trong hệ thống mạng thông tin di động CDMA thế hệ 2 Quá trình xử lý thời gian trong bột hu Rake giúp cho hệ thống CDMA giãm ảnh hưởng của nhiễu fading Có nhiều kỹ
Trang 20 1
*t
e
1
*t
e
1
*t
e
thuật khác nhau được dùng để tổ hợp tín hiệu tương quan Nếu việc kết hợp tín hiệu
có những trọng số phù hợp với từng kênh riêng lẽ và có hệ số khuếch đại tương xứng với những bộ phận nhiều đường tương ứng ,quá trình này gọi là tổ hợp tỷ lệ tối đa (MRC) MRC gọi là một kết cấu tổ hợp Đối với những bộ kết hợp không có kết cấu ,là tất cả những trọng số kết hợp đều bằng nhau và được gọi là bộ tổ hợp cùng độ lợi (EGC) Cả hai MRC và EGC đều hiệu quả để cải thiện tỷ số tín hiệu trên nhiễu SNR
Hình 2.4 Mô hình bộ thu Rake 2.6.1 Các kỹ thuật tổ hợp tín hiệu Có nhiều phương pháp tổ hợp tín hiệu nhiều đường tại bộ thu, song có 3 phương pháp chính đó là: Bộ tổ hợp tỷ lệ tối đa (MRC), Bộ tổ hợp cùng độ lợi (EGC) và bộ tổ hợp chọn lọc (SC) Giả thiết rằng, tín hiệu đến được chia thàn L đường thông qua L bộ thu Và ta ký hiệu i( i=1,…,L) là tỷ số năng lượng tín hiệu trên nhiễu cho đường thứ i Như vậy, với kênh truyền Rayleigh fading i, sẽ có: x c c i x e f / 1 (2.22) c giá trị trung bình năng lượng tín hiệu trên nhiễu 2.6.1.1 Bộ tổ hợp chọn lọc (SC) Với bộ tổ hợp chọn lọc, đường tín hiệu đến có SNR cao luôn được lựa chọn Như thế ngỏ ra của bộ tổ hợp chọn lọc là: scx L max 1, ,
Trong trường hợp kênh truyền Fading, có thể áp dụng hàm (2.22) cho sc
s
:
x L
c sc
s
e x
x x
finger#L
finger#1
finger#2
Tín hiệu ra
Trang 21
2.6.1.3 Bộ tổ hợp cùng độ lợi (EGC)
Bộ tổ hợp EGC cung tương tự như bộ tổ hợp MRC, khác nhau duy nhất là trong
bộ tổ hợp EGC không có sự xác định trọng số cho từng nhánh tín hiệu Tức là, trọng
số cho từng nhánh tín hiệu đều giống nhau EGC chỉ thích hợp cho các kỹ thuật điều chế mà các symbol có cùng mức năng lượng như M-PSK
2.7 Bộ thu Beamformer_Rake
Beamformer_Rake là sự kết hợp giữa Beamformer với Rake để xử lý tín hiệu trên cả 2 miền thời gian và không gian Hình 2.5 mô tả cấu trúc và nguyên lý hoạt động của bộ thu Beamformer-Rake Nó chứa một mảng các anten thu, tín hiệu thu được từ mảng được đưa đến các bộ tổ hợp không gian để thực hiện beamforming cho những tín hiệu đa đường, mỗi đường tín hiệu sẽ được nhân với một vector trọng
số khác nhau trước khi vào bộ tổ hợp Tín hiệu ra khỏi bộ tổ hợp không gian được đưa tới các finger sau đó được kết hợp lại bởi bộ tổ hợp Rake
Trang 22Kết luận chương:
Chương này đã xét đến hai kỹ thuật phân tập chính là phân tập không gian và phân tập thời gian và sự kết hợp hai kỹ thuật phân tập này thành kỹ thuật phân tập chung là kỹ thuật phân tập Không gian-Thời gian Trong đó, kỹ thuật phân tập không gian được thực hiện bởi bộ thu Beamformer, thực hiện bằng cách tổ hợp tín hiệu từ nhiều anten thu để có được tín hiệu thu tốt nhất Kỹ thuật phân tập thời gian được thực hiện bởi bộ thu Rake, thực hiện bằng cách phân chia tín hiệu thu thành nhiều khoảng thời gian trễ khác nhau sau đó dùng kết cấu tổ hợp để tổ hợp tín hiệu chọn ra tín hiệu tốt nhất Mục đích của bộ thu Beamformer là làm giảm ảnh hưởng của nhiễu giao thoa còn bộ thu Rake là làm giảm ảnh hưởng của nhiễu đa đường Vì thế, sự kết hợp giữa hai bộ thu này tạo thành bộ thu Beamformer-Rake, là một kết cấu tốt để làm giảm ảnh hưởng của nhiễu giao thoa và nhiễu fading lên tín hiệu thu Trong chương tiếp sẽ giới thiệu các kỹ thuật khác nhau để xử lý phân tập không gian trong bộ thu Beamformer
Trang 23CHƯƠNG 3 CÁC KỸ THUẬT BEAMFORMING
3.1 Giới Thiệu
Trong chương này sẽ giới thiệu những kỹ thuật khác nhau có thể được áp dụng cho Beamforming trong hệ thống mạng thông tin di động tổ ong CDMA và hệ thống OFDM Ba kỹ thuật chính được giới thiệu trong chương này là: tối ưu tỉ số tín hiệu trên nhiễu (MSNR),tối ưu tỉ số tín hiệu /nhiễu giao thoa và nhiễu nhiệt (MSINR) và kỹ thuật tối thiểu trung bình bình phương sai lệch (MMSE) Mở đầu chương với việc đi tìm hiểu kỹ thuật MSNR với giải pháp giá trị riêng đơn giản SE Sau đó xét đến kỹ thuật MSINR với giải pháp nhóm các giá trị riêng GE Tiếp theo
sẽ nghiên cứu kỹ thuật MMSE Beamforming Sau đây là nội dung của chương
3.2 Kỹ thuật MSNR Beamforming
Kỹ thuật MSNR được dùng để làm cho giá trị SNR tại đầu ra của beamformer là cực đại Để làm được điều đó, cần phải xác định được vector trọng lượng của anten mảng, sao cho khi nhân vector tín hiệu thu với vector trọng lượng thì sẽ có tín hiệu đầu ra có SNR cực đại Vector trọng lượng cần xác định chính là là vector riêng tương ứng với giá trị riêng lớn nhất của của ma trận hiệp phương sai tín hiệu thu Điều kiện tốt nhất cho kỹ thuật này chính là: nhiễu giao thoa và nhiễu nhiệt là nhiễu không gian trắng
3.2.1 Cực đaị tỉ số tín hiệu trên nhiễu (MSNR)
Trong kỹ thuật này, để có tỷ số tín hiệu SNR là cực đại, ta giả thiết rằng nhiễu tác động vào tín hiệu là nhiễu trắng Khi đó, tín hiệu thu được có thể viết như sau :
Ở đây s và n lần lượt là vector tín hiệu và vector nhiễu có kích thước N×1, với N
là số anten trong mảng Ma trận hiệp phương sai của nhiễu có dạng sau :
Trang 24
w R w
w s w E
s w E P
ss H
H H
H s
w R w
n w E P
H n nn H
H n
2
2 ) (
w R w SNR H
n ss H
2
Để tìm giá trị vector trọng lượng của mảng sao cho tỉ số SNR cực đại Ta đạo hàm
vế phải của biểu thức (3.6) theo w Hvà gán biểu thức đó bằng 0 ,ta được
2 0
w w
w w R w w R w w
H
ss H ss
H
w w
w R w w
R H ss
H ss
w R w
H ss H
giới hạn trong giá trị lớn nhất và nhỏ nhất của các giá trị riêng
là vector trọng số tối ưu làm cực đại SNR tại đầu ra của mảng
Như vậy, giải pháp MSNR để tìm ra vector đáp ứng tối ưu được thực hiện bằng cách tìm ra vector riêng (tương xứng với giá trị riêng lớn nhất) từ chuổi các giá trị riêng đơn giản, phương pháp này được gọi là phương pháp SE (simple Eigenvalue): MSNR MSNR
Kỹ thuật Beamforming thực hiện theo cách trên được gọi là Eigen_Beamforming Nếu có tín hiệu đi đến mảng từ một góc d,vector tín hiệu có thể được viết như sau :
Trang 25
H w a
d E
,vector đáp ứng cho MSNR được cho như sau :
Từ phương trình (3.13) ta nhận thấy Nếu không có nhiễu tác động vào thì bằng phương pháp định pha cho từng tín hiệu đến các phần tử của mảng, ta sẽ xác định được giá trị lớn nhất của SNR Ngoài ra MSNR beamforming có thể được hỗ trợ bởi các giải pháp tính toán trực tiếp (DF) Tuy nhiên kỹ thuật DF không được áp dụng rộng rãi Hơn thế nữa kỹ thuật DF luôn luôn đòi hỏi số lượng tín hiệu đến (bao gồm cả nhiễu giao thoa phải ít hơn số lượng anten trong mảng ) Điều này không thể đáp ứng được trong hệ thống mạng tổ ong CDMA
3.2.2 Phương thức cải tiến SE cho Beamforming
Từ phương trình 3.9 ta thấy cần phải xác định ma trận hiệp phương sai (
ss
R ) của tín hiệu đến để thực hiện bài toán SE Tuy nhiên rất khó để tách tín hiệu khỏi nhiễu
và tính
ss
R Nếu như có thể tách được tín hiệu khỏi nhiễu thì lúc đó ta không cần phải có Beamforming nữa Vì thế, có một kỹ thuật thay thế mà không cần đòi hỏi phải lượng tính ma trận hiệp phương sai của tín hiệu
Trang 26không chỉ tạo thành một cơ sở trực giao mà trực giao tới tín hiệu và nhiễu Vì vậy, bằng việc áp dụng vector trọng số ,beamformer thực hiện một hàm biến đổi theo tín hiệu làm cho không gian con (của tín hiệu và nhiễu )chỉ trực giao đến tín hiệu nhiễu
Nếu nhiễu lấn át tín hiệu, thì giá trị riêng lớn nhất sẽ không đáp ứng cho tín hiệu được nữa và đối với vector riêng ở biểu thức (3.16) cũng không còn là vector trọng
số đối với MSNR nữa Tuy nhiên trong môi trường CDMA, điều này không thường xảy ra bởi vì đã có quá trình xử lý độ lợi và kỹ thuật điều khiển công suất Các bộ thu trong CDMA là những thiết bị có nhiều bộ tương quan với nhau Đầu ra của các
bộ tương quan này chứa tín hiệu băng hẹp (narrowband) cùng với nhiễu giao thoa
và nhiễu Gauss Vì thế ma trận hiệp phương sai có thể được tính được tại ngỏ ra của các bộ tương quan từ đó tìm được MSNR cực đại
Trong phần trước chúng ta đã phân tích về tín hiệu nhiễu và tiếng ồn ,và giả thiết rằng nhiễu đó là nhiễu trắng Chúng ta có thể chia tín hiệu nhiễu trong biểu thức (3.1) thành hai thành phần như sau :
Trong đó n' là nhiễu trắng không gian và thời gian ,i là nhiễu giao thoa Nếu nhiễu giao thoa là nhiễu trắng, vector trọng số MSNR là tốt nhất Còn nếu chúng không phải là nhiễu trắng, thì vector riêng đáp ứng cho giá trị riêng lớn nhất của tín hiệu thu được không đáp ứng được cho vector trọng số MSNR Tuy nhiên vấn đề này được đề cập đến một khi cấu trúc không gian của tín hiệu giao thoa được tính đến và vector trọng số tối ưu sẽ đựơc xác định để làm cực đại tỷ số tín hiệu trên nhiễu giao thoa và tiếng ồn (SINR) Việc xácđịnh giá trị lớn nhất của SINR sẽ được
đề cập sau
3.2.3 Pha tín hiệu trong Eigen-Beamforming
Trước khi đi nghiên cứu các kỹ thuật beamforming khác ,chúng ta sẽ xét đến mặt hạn chế trong khả năng xử lý pha tín hiệu của kỹ thuật Eigen-Beamforming, hay gọi là sự nhập nhằng về pha trong kỹ thuật Eigen-Beamforming Trong khi Beamformer xác định giá trị tối ưu của SNR, ta thấy không có sự ràng buộc nào về pha của tín hiệu Việc dùng vector trọng số MSNR để tìm SNR theo như biểu thức (3.9) thì SNR tại ngõ ra của beamformer được cho như sau :
MSNR H
MSNR n
MSNR ss
H MSNR
w w
w R w SNR
2 max
Trang 27Ta hãy quan sát xem SNR sẽ như thế nào nếu beamformer dùng vector trọng số
w R w SNR H
MSNR n ss H
2 '
MSNR ss
H MSNR
w w
w R w
MSNR n
MSNR ss
H MSNR
w w
w R w
2 2 2
w R w
MSNR H
MSNR n
MSNR ss
H MSNR
3.3 Kỹ thuật MSINR Beamforming
Phần này ta sẽ đề cập đến kỹ thuật Eigen-Beamforming xác định MSINR tại đầu ra của beamformer Trong phần trước chúng ta đã nói đến kỹ thuật MSNR với điều tốt nhất là tín hiệu giao thoa và nhiễu là không gian trắng Nhưng trong hệ thống mạng WCDMA, các user khác nhau có data rate khác nhau, với hệ số trãi phổ khác nhau Trong cùng một thời gian chúng sẽ có BER khác nhau Vì thế, các users
có data rate cao yêu cầu phải hoạt động ở mức công suất cao hơn các users có data rate thấp hơn và như vậy các tín hiệu nhiễu giao thoa không thể là nhiễu không gian trắng như đã giả thiết trong kỹ thuật MSNR được nữa Kỹ thuật MSINR beamforming là một tiêu chí kỹ thuật đáp ứng tốt cho trường hợp này, nó hoạt động tốt trong trường hợp nhiễu không phải là nhiễu trắng Không giống như MSNR,
Trang 28MSINR là một kỹ thuật xử lý tín hiệu với một chuổi bài toán giá trị riêng đơn giản hay còn gọi là bài toán nhóm các giá trị riêng GE Sau đây là nội dung của kỹ thuật
3.3.1 Cực đại tỷ số tín hiệu trên nhiễu (SINR)
Vector tín hiệu thu được có dạng như sau :
R là ma trận hiệp phương sai của vector tín hiệu s
Tương tự, năng lượng của tín hiệu không mong muốn tại ngỏ ra của mảng là:
P E w u w R w
uu H H
R là ma trận hiệp phương sai của vector tín hiệu nhiễu u
Vậy tỷ số SINR tại ngỏ ra là :
w R w
w R w
uu H ss H
out
w R w w R
uu uu H ss H
w R w
uu H ss H
giới hạn trong bởi giá trị riêng lớn nhất và nhỏ nhất của ma
là vector trọng số tối ưu làm cho giá trị SINR tại ngõ ra của mảng là lớn nhất
Vì vậy ,giải pháp MSINR cho vector trọng số tối ưu được tính bởi vector riêng tương ứng với các giá trị riêng tổng quát sau:
MSINR.
uu MSINR
Trang 29Chúng ta có thể thấy rằng ma trận hiệp phương sai của nhiễu giao thoa và tiếng ồn
đã được giới thiệu trong biểu thức trước được dùng để xác định cấu trúc không gian của tín hiệu nhiễu Ma trận
Trong việc phân tích sau đây, nếu tín hiệu đến được xác định bởi góc tới là d
,ma trận hiệp phương sai của tín hiệu được biết như sau :
) (
d E
,Vector trọng số MSINR được cho như sau
w R R 1a(0)
uu MSIN
Một lần nữa ta có thể nhận thấy rằng ma trận hiệp phương sai (của nhiễu giao thoa
và tiếng ồn ) cùng với vector trọng số MSNR được dùng để tính trọng số MSINR Như thế biểu thức cho vector trọng số dễ dàng được thay đổi theo góc tới của các đường tín hiệu khác nhau
3.3.2 Xác định giá trị cực đại của tỉ số tín hiệu trên nhiễu (MSINR)
Nếu tín hiệu thu được bao gồm cả nhiễu giao thao và tiếng ồn, ma trận hiệp phương sai của tín hiệu thu được biểu diễn như sau :
uu ss
Giải pháp MRSINR dùng phương pháp vector riêng để tìm ra vector trọng lượng tối ưu của chuổi các giá trị riêng đơn giản (GE: Generalized Eigenvalue):
uu MRSINR
Phương trình (3.32) là phương trình đầy đủ cho trường hợp nhiễu tác động vào tín hiệu là nhiễu màu (noise colored) Trong trường hợp này việc xác định MSNR dựa
Trang 30vào việc phân chia ma trận hiệp phương sai của tín hiệu thu thành 2 không gian con trực giao và tìm giá trị vector riêng sao cho nó trực giao với thành phần nhiễu và đáp ứng với thành phần tính hiệu cần thu Hai không gian con trong trường hợp này của MRSINR beamforming chúng trực giao với nhau và là không gian con của ma trận hiệp phương sai tín hiệu với nhiễu Điều này cho phép dễ dàng điều chỉnh vector trọng số sao cho phù hợp với cấu trúc không gian của tín hiệu không mong muốn
3.4 Kỹ thuật MMSE Beamforming
Kỹ thuật MMSE (Minimum Mean Squared Error) được dùng để tìm ra giá trị của vector trọng lượng w MMSE mà làm cực tiểu sự sai lêch giữa tín hiệu mẫu ban đầu với tín hiệu tổ hợp Sự sai đó được định nghĩa bởi phương trình sau :
Với d là một mẫu tín hiệu tại anten đầu tiên,w là vector trọng lượng của mảng,
x là vector tín hiệu thu được tại mảng anten , k biểu thị cho mẩu tín hiệu đang xét
Vì thế MMSE được cho như sau
2
)
(k
e E
()()
Với R Ex(k)x H(k)
xx là ma trận hiệp phương sai của tín hiệu , r xd Ex(k)d*(k)
Là vector tương quan chéo giữa vector tín hiệu thu được x và tín hiệu mẫu d MSE
J nhỏ nhất khi J( ) 0 Với gradient vector được định nghĩa như sau :
Trang 31a R a
d E
a R a
d E
d E
2 ) ( 1
(3.44)
So sánh 2 biểu thức (3.43) với biểu thức (3.29), ta thấy vector trọng số MMSE chỉ khác MSINR bởi một số thực vô hướng Khi SINR tại ngõ ra của beamformer không phụ thuộc vào số thực vô hướng này, vector trọng số của MMSE sẽ làm cực đại SINR
3.5 So sánh MSINR và MMSE Beamforming trong một trường hợp đơn giản
Phần này sẽ tiến hành so sánh việc thực hiện 2 phương pháp MSINR và MMSE trong một trường hợp đơn giản Tín hiệu truyền đi bị ảnh hưởng bởi 2 nhiễu giao thoa và nhiêu nhiệt, với bộ thu tín hiệu dùng anten ULA 4 phần tử, khoảng cách giữa các anten là nữa bước sóng sóng mang Với góc đến của tín hiệu là 30o , hai nhiễu truyền đến với góc đến là 60o và -60o Sau đây là biểu đồ minh hoạ cho 2 phương pháp:
Trang 32Hình 3.1 Biểu đồ thể hiện đồ thị bức xạ của anten ULA
theo các kỹ thuật MSINR và MMSE
Hình 3.2 Giản đồ BER theo các kỹ thuật MSINR và MMSE
Trang 33
Kết luận chương
Trong chương này chúng ta đã nghiên cứu các kỹ thuật khác nhau trong bộ Beamfermer Các kỹ thuật đó là MSNR, MSINR và MMSE Trong đó hai kỹ thuật MSNR và MSINR đều dùng phương pháp giải bài toán tìm giá trị riêng của ma trận, còn kỹ thuật MMSE thì dựa vào tính tương quan giữa tín hiệu thu và tín hiệu mẫu Mục đích chính của 3 kỹ thuật trên đều là làm giảm tỷ số tín hiệu/nhiễu tại đầu ra của bộ thu Beamformer Mỗi kỹ thuật trên đều có những lợi điểm khác nhau ở cấp
độ tính toán Trong chương tiếp chúng ta sẽ nghiên cứu các thuật toán khác nhau cho từng kỹ thuật trên
Trang 34
CHƯƠNG 4 CÁC THUẬT TOÁN BEAMFORMING
Giới thiệu chương
Chương này chúng ta sẽ đi sâu tìm hiểu các thuật toán khác nhau để giải bài
toán tìm vector trọng lượng w của mảng anten theo các kỹ thuật khác nhau đó là kỹ
thuật MSNR ,MSINR và MMSE Đối với 2 kỹ thuật MSNR và MSINR thì việc giải
bài toán tìm w được thực hiện bằng cách tìm vector riêng của ma trận (bài toán SE
đối với kỹ thuật MSNR và bài toán GE đối với kỹ thuật MSINR), còn đối với kỹ
thuật MMSE thì thực hiện theo nguyên lý tìm w sao cho trung bình bình phương sai
lệch giữa tín hiệu thu và tín hiệu mẫu là nhỏ nhất Có nhiều phương pháp để thực hiện các kỹ thuật trên Sau đây ta sẽ nghiên cứu các phương pháp đó
4.1 Định nghĩa ma trận đánh giá độ phức tạp tính toán
Trước khi đi nghiên cứu các thuật toán để giải quyết vấn đề các giá trị riêng đơn giản, chúng ta cần định nghĩa một chuẩn hay còn gọi là một đơn vị để đánh giá độ phức tạp trong tính toán của những thuật toán đó
Xét 2 vector x và y có dạng như sau:
imag N
real imag
real imag
real i imag i
imag i imag i
real i real H
y x y x j y
x y x y
tính scalar, với là số lần thực hiện tích tích scalar, N là kích thước của vector
Trong tài liệu này chúng ta sẽ sử dụng O ( N ) làm đơn vị để so sánh độ phức tạp trong tính toán của các thuật toán
4.2 Thuật toán cho kỹ thuật MSNR
Trong kỹ thuật MSNR có 3 phương pháp chính để giải bài toán giá trị riêng đơn giản đó là :
Phương pháp sức mạnh (power)
Phương pháp bội số nhân Lagrange
Trang 35 Phương pháp Liên hợp Gradien
Sau đây là nội dung từng phương pháp
1)1
i i
) ( ) ( ) ( ) (
i w i w
i w k R i w
f gọi là hệ số bỏ quên, với f được chọn sao cho 0< f <1
Từ trên, ta nhận thấy rằng vector riêng là điểm mấu chốt để thực hiện Beamforming, chúng ta có thể định nghĩa phương trình tính toán cho phương pháp
power như sau (dùng phương pháp lặp)
) 1 ( )
k q k
w
Chú ý rằng tham số lặp i đã suy giảm thành tham số snapshot index k Tuy lúc này không cần phải tính giá trị riêng đáp ứng cho từng tích số thực scalar Song, ta nhận thấy rằng độ phức tạp trong tính toán của phương pháp power là O(N 2 +N) với N là
số lượng các phần tử trong vector phức hợp Chúng ta có thể có thuật toán khác để
cập nhật ma trận hiệp phương sai với mức độ phức tạp trong tính toán là O(1.5N 2 )
Để thực hiện phương pháp này, trước tiên ta phải chọn một giá trị bắt đầu cho việc tính toán các giá trị lặp Mỗi một tín hiệu nào trong không gian N tín hiệu đều
có thể được biểu diễn bởi một dãy tổ hợp các vector riêng như sau :
Ở đây
1 2
q là những vector riêng tương ứng với các giá trị riêng
1 2
1
0 , , N
Nếu điều kiện ban đầu a0 0, thì phương pháp power sẽ được
Trang 36hội tụ (tìm được vector riêng và giá trị riêng thích hợp), và để cho quá trình nhanh chóng được hội tụ thì giá trị dự đoán ban đầu q 0 phải phù hợp, trong trường hợp
này thì hệ số a 0 phải khác nhiều so với các hệ số khác Tín hiệu tại ngõ ra của các
bộ tương quan trong CDMA sẽ đáp ứng được diều đó do có sự điều khiển độ lợi Như vậy, chọn
)0(
)0()0(
s
s
w là giá trị bắt đầu tốt nhất cho các thuật toán lặp để giải quyết bài toán SE Với s(0) là mẫu đầu tiên của vector tín hiệu tại ngỏ ra của bộ giải trải phổ (despreader) Trong đồ án này chúng ta sẽ dùng điều kiện ban đầu trên trong tất cả các thuật toán dùng để giải bài toán SE cũng như GE dựa vào Eigen-Beamforming
Nếu chúng ta dùng giá trị tức thời của ma trận hiệp phương sai
) ( )
(
)
(k s k s k
ss (đã có sẵn ở đầu ra của bộ thu), phương pháp power có thể được
cho bằng các biểu thức sau :
) 1 (
) 1 ( ) 1
(
) ( ) ( )
1
(
) ( ) ( )
k q k
w
k s k y k
q
k s k w k
4.2.2 Phương pháp bội số Lagrange
Phương pháp này dùng để tính toán vector trọng số tối ưu bởi việc xử lý đơn giản các giá trị riêng Với mục đích là tìm vector trọng số w làm cực đại giá trị
Với là bội số nhân lagrange cho sự ràng buộc w H w 1
Như thế, phương pháp này sẽ tìm giá trị cực đại của hàm J w với sự ràng buộc
Trang 37Ở đây là một số thực dương được chọn cho sự hội tụ của thủ tục trên , là
gradient vector của hàm J w với tham số đáp ứng H
w Vì thế phương trình cập nhật cho vector trọng số được có như sau :
0 N
là những giá trị riêng của ma trận hiệp phương sai
ss
R Một khi sự ràng buộc đã được thoả mãn tại mỗi bước lặp, trong biểu thức (4.10)
ta có thể dùng phương trình ràng buộc w Hk 1 w k 1 1 Do đó ta có thể đưa ra giải pháp để giải quyết k như sau [11]:
k w k d k d k d c
k w k d b a
k R w k d
H
ss H
k w k
w
k w k k
d k w k
w H
Trang 38
a
ac b b
k
Với a b w k R k w k
ss H
s
s
w Vector trọng số w k sẽ được tìm ra sau nhiều lần lặp Hình (4.1) mô tả lưu đồ thuật toán của phương pháp bội số
k
2
k c y k s k y k w k s k y
Trang 39Ta nhận thấy độ phức tạp trong tính toán của phương pháp này sau khi được cải
tiến là O(4N) Vậy độ phức tạp tính toán đã được giảm xuống và tỷ lệ tuyến tính
với N
4.2.3 Phương pháp liên hợp Gradient
Phương pháp liên hợp gradient (CGM) là phương pháp tốt nhất để giải các phương trình ma trận dạng A.x y, với ma trận A và y đã biết trước Trong phương pháp này phương trình cập nhật của vector trọng số của mảng có dạng như sau :
i w k R i w i
w
J H ss
H
với ràng buộc w H i w i 1 Ở đây i là tham số lặp trong một mẫu được cho
Hàm Jw i đạt cực đại khi cho lặp i = 1, 2,… đối với mẫu Snapshots index k Quá
k s k y c
k y b
a
k s k w k
2
2 1
.
1 1
k w k
w
k s k y k w k k
Hình 4.2 Lưu đồ thuật toán của phương pháp bội số lagrange đã được đơn giản