Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 910 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
910
Dung lượng
22,19 MB
Nội dung
HANDBOOK OF
MEDICAL IMAGING
Editorial Advisory Board
Dr. William Brody Dr. Elias Zerhouni
President Chairman, Department of Radiology
Johns Hopkins University and Radiological Science
Johns Hopkins Medical Institutions
Section Editors
Dr. Rangaraj M. Rangayyan Dr. Richard A. Robb
Department of Electrical and Computer Engineering Director, Biomedical Imaging Resource
University of Calgary Mayo Foundation
Dr. Roger P. Woods Dr. H. K. Huang
Division of Brain Mapping Department of Radiology
UCLA School of Medicine Childrens Hospital of Los Angeles/
University of Southern California
Academic Press Series in Biomedical Engineering
Joseph Bronzino, Series Editor
The focus of this series will be twofold. First, the series will produce a set of core text/
references for biomedical engineering undergraduate and graduate courses. With
biomedical engineers coming from a variety of engineering and biomedical backgrounds,
it will be necessary to create new cross-disciplinary teaching and self-study books. Secondly,
the series will also develop handbooks for each of the major subject areas of biomedical
engineering.
Joseph Bronzino, the series editor, is one of the most renowned biomedical engineers in the
world. He is the Vernon Roosa Professor of Applied Science at Trinity College in Hartford,
Connecticut.
HANDBOOK OF
MEDICAL IMAGING
PROCESSING AND ANALYSIS
Editor-in-Chief
Isaac N. Bankman, PhD
Applied Physics Laboratory
Johns Hopkins University
Laurel, Maryland
San Diego / San Francisco / New York / Boston / London / Sydney / Tokyo
This book is printed on acid-free paper. ?
s
Copyright # 2000 by Academic Press
All rights reserved.
No part of this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopy, recording, or any information storage and retrieval
system, without permission in writing from the publisher.
Requests for permission to make copies of any part of the work should be mailed to: Permissions
Department, Harcourt, Inc., 6277 Sea Harbor Drive, Orlando, Florida, 32887-6777.
ACADEMIC PRESS
A Harcourt Science and Technology Company
525 B Street, Suite 1900, San Diego, CA 92101-4495, USA
http://www.academicpress.com
Academic Press
Harcourt Place, 32 Jamestown Road, London NW1 7BY, UK
Library of Congress Catalog Card Number: 00-101315
International Standard Book Number: 0-12-077790-8
Printed in the United States of America
00 01 02 03 04 COB 9 8 7 6 5 4 3 2 1
To Lisa, Judy, and Danny
Contents
Foreword ix
Preface xi
Contributors xiii
I Enhancement
1 Fundamental Enhancement Techniques Raman B. Paranjape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3
2 Adaptive Image Filtering Carl-Fredrik Westin, Hans Knutsson, and Ron Kikinis. . . . . . . . . . . . . . . . . . . . . . .
19
3 Enhancement by Multiscale Nonlinear Operators Andrew Laine and Walter Huda . . . . . . . . . . . . . . . . . . . .
33
4 Medical Image Enhancement with Hybrid Filters Wei Qian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
57
II Segmentation
5 Overview and Fundamentals ofMedical Image Segmentation Jadwiga Rogowska . . . . . . . . . . . . . . . . . . . . .
69
6 Image Segmentation by Fuzzy Clustering: Methods and Issues Melanie A. Sutton, James C. Bezdek,
Tobias C. Cahoon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
87
7 Segmentation with Neural Networks Axel Wismu
È
ller, Frank Vietze, and Dominik R. Dersch . . . . . . . . . . . . . .
107
8 Deformable Models Tim McInerney and Demetri Terzopoulos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
127
9 Shape Constraints in Deformable Models Lawrence H. Staib, Xiaolan Zeng, James S. Duncan, Robert T. Schultz,
and Amit Chakraborty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
147
10 Gradient Vector Flow Deformable Models Chenyang Xu and Jerry L. Prince . . . . . . . . . . . . . . . . . . . . . . . .
159
11 Fully Automated Hybrid Segmentation of the Brain M. Stella Atkins and Blair T. Mackiewich. . . . . . . . . . . . .
171
12 Volumetric Segmentation Alberto F. Goldszal and Dzung L. Pham . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
185
13 Partial Volume Segmentation with Voxel Histograms David H. Laidlaw, Kurt W. Fleischer, and Alan H. Barr . .
195
III Quanti®cation
14 Two-Dimensional Shape and Texture Quanti®cation Isaac N. Bankman, Thomas S. Spisz, and Sotiris Pavlopoulos
215
15 Texture Analysis in Three Dimensions as a Cue to Medical Diagnosis Vassili A. Kovalev and Maria Petrou . . . .
231
16 Computational Neuroanatomy Using Shape Transformations Christos Davatzikos . . . . . . . . . . . . . . . . . . . .
249
17 Arterial Tree Morphometry Roger Johnson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
261
18 Image-Based Computational Biomechanics of the Musculoskeletal System Edmund Y. Chao, N. Inoue, J.J. Elias,
and F.J. Frassica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
285
19 Three-Dimensional Bone Angle Quanti®cation Jens A. Richolt, Nobuhiko Hata, Ron Kikinis, Jens Kordelle,
and Michael B. Millis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
299
20 Database Selection and Feature Extraction for Neural Networks Bin Zheng . . . . . . . . . . . . . . . . . . . . . . . . .
311
21 Quantitative Image Analysis for Estimation of Breast Cancer Risk Martin J. Yaffe, Jeffrey W. Byng,
and Norman F. Boyd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
323
22 Classi®cation of Breast Lesions in Mammograms Yulei Jiang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
341
23 Quantitative Analysisof Cardiac Function Osman Ratib. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
359
24 Image ProcessingandAnalysis in Tagged Cardiac MRI William S. Kerwin, Nael F. Osman, and Jerry L. Prince .
375
25 Image Interpolation and Resampling Philippe The
Â
venaz, Thierry Blu, and Michael Unser . . . . . . . . . . . . . . . .
393
IV Registration
26 Physical Basis of Spatial Distortions in Magnetic Resonance Images Peter Jezzard . . . . . . . . . . . . . . . . . . . . .
425
27 Physical and Biological Bases of Spatial Distortions in Positron Emission Tomography Images Magnus Dahlbom
and Sung-Cheng (Henry) Huang. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
439
28 Biological Underpinnings of Anatomic Consistency and Variability in the Human Brain N. Tzourio-Mazoyer,
F. Crivello, M. Joliot, and B. Mazoyer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
449
29 Spatial Transformation Models Roger P. Woods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
465
vii
30 Validation of Registration Accuracy Roger P. Woods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
31 Landmark-Based Registration Using Features Identi®ed Through Differential Geometry Xavier Pennec,
Nicholas Ayache, and Jean-Philippe Thirion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
32 Image Registration Using Chamfer Matching Marcel Van Herk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
33 Within-Modality Registration Using Intensity-Based Cost Functions Roger P. Woods. . . . . . . . . . . . . . . . . . . . 529
34 Across-Modality Registration Using Intensity-Based Cost Functions Derek L.G. Hill and David J. Hawkes . . . . . 537
35 Talairach Space as a Tool for Intersubject Standardization in the Brain Jack L. Lancaster and Peter T. Fox . . . . . 555
36 Warping Strategies for Intersubject Registration Paul M. Thompson and Arthur W. Toga . . . . . . . . . . . . . . . . . 569
37 Optimizing the Resampling of Registered Images William F. Eddy and Terence K. Young . . . . . . . . . . . . . . . . . 603
38 Clinical Applications of Image Registration Robert Knowlton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613
39 Registration for Image-Guided Surgery Eric Grimson and Ron Kikinis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623
40 Image Registration and the Construction of Multidimensional Brain Atlases Arthur W. Toga
and Paul M. Thompson. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635
V Visualization
41 Visualization Pathways in Biomedicine Meiyappan Solaiyappan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659
42 Three-Dimensional Visualization in Medicine and Biology Richard A. Robb . . . . . . . . . . . . . . . . . . . . . . . . . 685
43 Volume Visualization in Medicine Arie E. Kaufman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713
44 Fast Isosurface Extraction Methods for Large Image Data Sets Yarden Livnat, Steven G. Parker,
and Christopher R. Johnson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731
45 Morphometric Methods for Virtual Endoscopy Ronald M. Summers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 747
VI Compression Storage and Communication
46 Fundamentals and Standards of Compression and Communication Stephen P. Yanek, Quentin E. Dolecek,
Robert L. Holland, and Joan E. Fetter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 759
47 Medical Image Archive and Retrieval Albert Wong and Shyh-Liang Lou . . . . . . . . . . . . . . . . . . . . . . . . . . . . 771
48 Image Standardization in PACS Ewa Pietka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 783
49 Quality Evaluation for Compressed Medical Images: Fundamentals Pamela Cosman, Robert Gray,
and Richard Olshen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803
50 Quality Evaluation for Compressed Medical Images: Diagnostic Accuracy Pamela Cosman, Robert Gray,
and Richard Olshen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 821
51 Quality Evaluation for Compressed Medical Images: Statistical Issues Pamela Cosman, Robert Gray,
and Richard Olshen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 841
52 Three-Dimensional Image Compression with Wavelet Transforms Jun Wang and H.K. Huang . . . . . . . . . . . . . 851
53 Medical Image ProcessingandAnalysis Software Thomas S. Spisz and Isaac N. Bankman . . . . . . . . . . . . . . . . 863
Index 895
viii
Foreword
The development ofmedical imaging over the past three
decades has been truly revolutionary. For example, in cardi-
ology specialized three-dimensional motion estimation
algorithms allow myocardial motion and strain measurements
using tagged cardiac magnetic resonance imaging. In mam-
mography, shape and texture analysis techniques are used to
facilitate the diagnosis of breast cancer and assess its risk.
Three-dimensional volumetric visualization of CT and MRI
data of the spine, internal organs and the brain has become the
standard for routine patient diagnostic care.
What is perhaps most remarkable about these advances in
medical imaging is the fact that the challenges have required
signi®cant innovation in computational techniques for nearly
all aspects of image processing in various ®elds. The use of
multiple imaging modalities on a single patient, for example
MRI and PET, requires sophisticated algorithms for image
registration and pattern matching. Automated recognition
and diagnosis require image segmentation, quanti®cation and
enhancement tools. Algorithms for image segmentation and
visualization are employed broadly through many applications
using all of the digital imaging modalities. And ®nally, the
widespread availability ofmedical images in digital format has
spurred the search for ef®cient and effective image compres-
sion and communication methods.
Advancing the frontiers ofmedical imaging requires the
knowledge and application of the latest image manipulation
methods. In HandbookofMedical Imaging, Dr. Bankman has
assembled a comprehensive summary of the state-of-the-art in
image processingandanalysis tools for diagnostic and
therapeutic applications ofmedical imaging. Chapters cover
a broad spectrum of topics presented by authors who are highly
expert in their respective ®elds. For all those who are working
in this exciting ®eld, the Handbook should become a standard
reference text in medical imaging.
William R. Brody
President, John Hopkins
University
ix
[...]... journey of the Handbook was set on its course with the guidance of two distinguished leaders who served on the advisory board of the Handbook: William Brody, president of Johns Hopkins University, and Elias Zerhouni, director of the Radiology and Radiological Science Department at Hopkins I appreciate the vision and encouragement of Joel Claypool who initiated this Handbook at Academic Press and allowed... contrast because of the nature and superimposition of the soft tissues of the breast, which is compressed during the imaging procedure The small differences that may exist between normal and abnormal tissues are confounded by noise and artifacts, often making direct analysis of the acquired images dif®cult In all of the cases just mentioned, some improvement in the appearance and visual quality of the images,... Chapter 12 Silesian University of Technology Division of Biomedical Electronics PL 44-101 Gliwice, Poland Chapter 48 Center for Imaging Science Department of Electrical and Computer Engineering Johns Hopkins University Baltimore, MD 21218 Chapters 10, 24 Wei Qian Department of Radiology College of Medicine and the H Lee Mof®tt Cancer and Research Institute University of South Florida Tampa, FL 33612... the fundamental classes of algorithms: enhancement, segmentation, quanti®cation, registration, visualization, and a section that covers compression, storage, and communication The last chapter describes some software packages for medical image processingand analysis I Enhancement Enhancement algorithms are used to reduce image noise and increase the contrast of structures of interest In images where... with each other or with templates, many must be compressed and archived To assist visual interpretation ofmedical images, the international imaging community has developed numerous automated techniques which have their merits, limitations, and realm of application This Handbook presents concepts and digital techniques for processingand analyzing medical images after they have been generated or digitized... its own realm of applications Given the diverse nature ofmedical images and their associated problems, it would be dif®cult to prescribe a single method that can serve a range of problems An investigator is well advised to study the images and their enhancement needs, and to explore a range of techniques, each of which may individually satisfy a subset of the requirements A collection of processed... hardware and software speci®cally designed to facilitate visual inspection ofmedicaland biological data In some cases such as volumetric data, visualization techniques are essential to enable effective visual inspection This section starts with the evolution of visualization techniques and presents the fundamental concepts and algorithms used for rendering, display, manipulation, and modeling of multidimensional... techniques, volume visualization, and virtual endoscopy are discussed in detail, and applications are illustrated in two and three dimensions VI Compression, Storage, and Communication Compression, storage, and communication ofmedical images are related functions for which demand has recently increased signi®cantly Medical images need to be stored in an ef®cient and convenient manner for subsequent... blurring of lines and edges A computationally ef®cient way of implementing shift-variant anisotropic ®lters based on a non-linear combination of shift-invariant ®lter responses is described 2 Multidimensional Spatial Frequencies and Filtering At a conceptual level, there is a great deal of similarity between 1D signal processingand signal processing in higher dimensions For example, the intuition and knowledge... University of West Florida Pensacola, FL 32514 Chapter 6 Thierry Blu Department of Electrical and Computer Engineering University of California at San Diego La Jolla, CA 92093-0407 Chapters 49, 50, 51 Fabrice Crivello Groupe d'Imagerie Neurofonctionelle (GIN) Â Universite de Caen GIP Cyceron 14074 Caen Cedex, France Chapter 28 Magnus Dahlbom Division of Nuclear Medicine Department of Molecular andMedical . the Vernon Roosa Professor of Applied Science at Trinity College in Hartford,
Connecticut.
HANDBOOK OF
MEDICAL IMAGING
PROCESSING AND ANALYSIS
Editor-in-Chief
Isaac. methods.
Advancing the frontiers of medical imaging requires the
knowledge and application of the latest image manipulation
methods. In Handbook of Medical Imaging, Dr.