1. Trang chủ
  2. » Khoa Học Tự Nhiên

In vitro materials design

237 3 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Nội dung

www.pdfgrip.com www.pdfgrip.com Roman Leitsmann, Philipp Plänitz, and Michael Schreiber In-vitro Materials Design www.pdfgrip.com Related Titles Frenking, G., Shaik, S (eds.) Schmitz, G.J., Prahl, U (eds.) The Chemical Bond Volume Set Integrative Computational Materials Engineering 2014 Concepts and Applications of a Modular Simulation Platform ISBN: 978-3-527-33318-9; also available in electronic formats 2012 Reiher, M., Wolf, A Relativistic Quantum Chemistry The Fundamental Theory of Molecular Science Second edition 2014 ISBN: 978-3-527-33415-5; also available in electronic formats Vaz Junior, M., de Souza Neto, E.A., Munoz-Rojas, P.A (eds.) Advanced Computational Materials Modeling From Classical to Multi-Scale Techniques 2011 Print ISBN: 978-3-527-32479-8; also available in electronic formats Print ISBN: 978-3-527-33081-2; also available in electronic formats Nikrityuk, P.A Computational Thermo-Fluid Dynamics In Materials Science and Engineering 2011 Print ISBN: 978-3-527-33101-7; also available in electronic formats Levitin, V Interatomic Bonding in Solids Fundamentals, Simulation, and Applications 2014 Print ISBN: 978-3-527-33507-7; also available in electronic formats ISBN: 978-3-527-67155-7 www.pdfgrip.com Roman Leitsmann, Philipp Plänitz, and Michael Schreiber In-vitro Materials Design Modern Atomistic Simulation Methods for Engineers www.pdfgrip.com Authors Dr Roman Leitsmann AQcomputare GmbH Annaberger Straße 240 09125 Chemnitz Germany Dr Philipp Plänitz AQcomputare GmbH Annaberger Straße 240 09125 Chemnitz Germany Michael Schreiber Technische Universität Chemnitz Institute of Physics Reichenhainer Str 70 09126 Chemnitz Germany Cover picture courtesy of Sang-Woo Kim, Ph.D., Professor School of Advanced Materials Science & Engineering SKKU Advanced Institute of Nanotechnology (SAINT) Sungkyunkwan University (SKKU) Cheoncheon 300 Suwon 440-746 South Korea All books published by Wiley-VCH are carefully produced Nevertheless, authors, editors, and publisher not warrant the information contained in these books, including this book, to be free of errors Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate Library of Congress Card No.: applied for British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at © 2015 Wiley-VCH Verlag GmbH & Co KGaA, Boschstr 12, 69469 Weinheim, Germany All rights reserved (including those of translation into other languages) No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers Registered names, trademarks, etc used in this book, even when not specifically marked as such, are not to be considered unprotected by law Print ISBN: 978-3-527-33423-0 ePDF ISBN: 978-3-527-66738-3 ePub ISBN: 978-3-527-66737-6 Mobi ISBN: 978-3-527-66736-9 oBook ISBN: 978-3-527-66735-2 Cover Design Schulz Grafik-Design, Fgưnheim, Germany Typesetting Laserwords Private Limited, Chennai, India Printing and Binding Markono Print Media Pte Ltd, Singapore Printed on acid-free paper www.pdfgrip.com V Contents Preface IX Part I Basic Physical and Mathematical Principles Introduction Newtonian Mechanics and Thermodynamics 2.1 2.2 2.3 2.4 Equation of Motion Energy Conservation Many Body Systems 10 Thermodynamics 11 Operators and Fourier Transformations 3.1 3.2 3.3 Complex Numbers 17 Operators 18 Fourier Transformation 20 4.1 4.2 4.3 Quantum Mechanical Concepts 25 Heuristic Derivation 25 Stationary Schrödinger Equation 27 Expectation Value and Uncertainty Principle Chemical Properties and Quantum Theory 5.1 5.2 Atomic Model 33 Molecular Orbital Theory 39 Crystal Symmetry and Bravais Lattice 47 6.1 6.2 6.3 6.4 Symmetry in Nature 47 Symmetry in Molecules 47 Symmetry in Crystals 49 Bloch Theorem and Band Structure 53 17 33 28 www.pdfgrip.com VI Contents 57 Part II Computational Methods Introduction 59 Classical Simulation Methods 8.1 8.2 8.3 65 Molecular Mechanics 65 Simple Force-Field Approach 68 Reactive Force-Field Approach 71 9.5.1 9.5.2 9.5.3 9.6 9.6.1 9.6.2 9.6.3 9.6.4 9.7 9.7.1 9.7.2 9.7.3 9.7.4 9.7.5 9.7.5.1 9.7.5.2 9.7.5.3 77 Born–Oppenheimer Approximation and Pseudopotentials 77 Hartree–Fock Method 80 Density Functional Theory 83 Meaning of the Single-Electron Energies within DFT and HF 85 Approximations for the Exchange–Correlation Functional EXC 88 Local Density Approximation 88 Generalized Gradient Approximation 89 Hybrid Functionals 90 Wave Function Representations 91 Real-Space Representation 91 Plane Wave Representation 92 Local Basis Sets 93 Combined Basis Sets 95 Concepts Beyond HF and DFT 96 Quasiparticle Shift and the GW Approximation 97 Scissors Shift 99 Excitonic Effects 100 TDDFT 100 Post-Hartree–Fock Methods 101 Configuration Interaction (CI) 102 Coupled Cluster (CC) 102 Møller–Plesset Perturbation Theory (MPn) 103 10 Multiscale Approaches 9.1 9.2 9.3 9.4 9.5 Quantum Mechanical Simulation Methods 10.1 10.2 105 Coarse-Grained Approaches 105 QM/MM Approaches 108 11 Chemical Reactions 11.1 11.2 111 Transition State Theory 111 Nudged Elastic Band Method 114 www.pdfgrip.com Contents Part III Industrial Applications 117 12 Introduction 13 Microelectronic CMOS Technology 13.1 13.2 13.2.1 13.2.2 13.2.3 13.2.4 13.2.5 13.2.6 13.3 13.3.1 13.3.2 13.3.3 13.3.4 13.4 13.4.1 13.4.2 13.4.3 13.4.4 14 14.1 14.2 14.2.1 14.2.2 14.2.3 14.2.4 14.2.5 14.2.6 14.3 14.3.1 14.3.2 14.3.3 14.3.4 14.3.5 119 121 Introduction 121 Work Function Tunability in High-k Gate Stacks 127 Concrete Problem and Goal 127 Simulation Approach 129 Modeling of the Bulk Materials 129 Construction of the HKMG Stack Model 132 Calculation of the Band Alignment 136 Simulation Results and Practical Impact 138 Influence of Defect States in High-k Gate Stacks 141 Concrete Problem and Goal 141 Simulation Approach and Model System 144 Calculation of the Charge Transition Level 145 Simulation Results and Practical Impact 146 Ultra-Low-k Materials in the Back-End-of-Line 149 Concrete Problem and Goal 149 Simulation Approach 151 The Silylation Process: Preliminary Considerations 153 Simulation Results and Practical Impact 155 159 Introduction 159 GaN Crystal Growth 163 Concrete Problem and Goal 163 Simulation Approach 165 ReaxFF Parameter Training Scheme 166 Set of Training Structures: ab initio Modeling 168 Model System for the Growth Simulations 170 Results and Practical Impact 172 Intercalation of Ions into Cathode Materials 174 Concrete Problem and Goal 174 Simulation Approach 176 Calculation of the Cell Voltage 178 Obtained Structural Properties of Lix V2 O5 178 Results for the Cell Voltage 181 Modeling of Chemical Processes 15 Properties of Nanostructured Materials 15.1 15.2 Introduction 183 Embedded PbTe Quantum Dots 187 183 VII www.pdfgrip.com VIII Contents 15.2.1 15.2.2 15.2.3 15.2.4 15.2.5 15.2.6 15.3 15.3.1 15.3.2 15.3.3 15.3.4 15.3.5 15.3.6 Concrete Problem and Goal 187 Simulation Approach 188 Equilibrium Crystal Shape and Wulff Construction 190 Modeling of the Embedded PbTe Quantum Dots 191 Obtained Structural Properties 194 Internal Electric Fields and the Quantum Confined Stark Effect 195 Nanomagnetism 199 Concrete Problem and Goal 199 Construction of the Silicon Quantum Dots 200 Ab initio Simulation Approach 203 Calculation of the Formation Energy 204 Resulting Stability Properties 205 Obtained Magnetic Properties 206 References Index 221 211 www.pdfgrip.com 211 References Filler, A (1993) Euklidische und 10 11 nichteuklidische Geometrie, BI Wissenschaftsverlag, Mannheim, ISBN: 978-3-4111-6371-7 Arnold, V.I (1989) Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics, Springer-Verlag, Heidelberg, ISBN: 978-0-3879-6890-2 Schmutzer, E (1989) Grundlagen der Theoretischen Physik Teil I, Verlag der Wissenschaften, Berlin, ISBN: 3-326-00093-6 Moskowitz, M.A (2002) A Course in Complex Analysis in One Variable, World Scientific Publishing, Singapore, p 7, ISBN: 978-9-8102-4780-5 Lawson, T (1996) Linear Algebra, John Wiley & Sons, Ltd, Weinheim, ISBN: 978-0-4713-0897-3 (a) Arfken, G (1985) in Mathematical Methods for Physicists, vol 3, Academic Press, Orlando, FL, p 425; (b) Weisstein, E.W., Parseval’s Relation, From MathWorld–A Wolfram Web Resource Jönsson, C (1961) Z Phys., 161, 454 Arndt, M et al (1999) Nature, 401, 680 Einstein, A (1905) Ann Phys., 322, 132 Schrödinger, E (1926) Ann Phys., 79, 361 Resnick, R and Eisberg, R (1985) Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles, vol 2, John Wiley & Sons, Inc., New York, ISBN: 0-471-87373-X 12 Ross, S.M and Heinisch, C (2006) 13 14 15 16 17 18 19 20 21 22 23 24 Statistik für Ingenieure und Naturwissenschaftler, vol 3, Spektrum Akademischer Verlag, Heidelberg, ISBN: 978-3-8274-1621-6 Born, M (1926) Z Phys., 37, 863 Scherz, U (1999) Quantenmechanik, Teubner Studienbücher, Stuttgart, Leipzig, ISBN: 3-519-03246-5 Uhlenbeck, G.E and Goudsmit, S (1925) Naturwissenschaften, 13, 953 Goudsmit, S and Uhlenbeck, G.E (1926) Nature, 117, 264 Haken, H and Wolf, H.C (2002) Atomund Quantenphysik, Springer-Verlag, Heidelberg, ISBN: 3-540-67453-5 Pauli, W (1925) Z Phys., 31, 765 Stone, A.J (1997) The Theory of Intermolecular Forces, Oxford University Press, Oxford, ISBN: 978-0-19855883-5 Leach, M.R (1999–2013) The Chemogenesis web book, http://www.meta-synthesis.com /webbook/38_laing/tetrahedra.html (accessed 30 January 2015) Laing, M (1993) Educ Chem., 30, 160 Murrel, J., Kettle, S., and Tedder, J (1985) The Chemical Bond, 2nd edn, John Wiley & Sons, Ltd, Weinheim, ISBN: 0-471-90759-6 Flurry, R.L.J (1980) Symmetry Groups: Theory and Chemical Applications, Prentice-Hall, Englewood Cliffs, NJ, ISBN: 0-13-880013-8 Demtröder, W (2003) Molekülphysik, Oldenbourg, Berlin, ISBN: 3-48624974-6 In-vitro Materials Design: Modern Atomistic Simulation Methods for Engineers, First Edition Roman Leitsmann, Philipp Plänitz, and Michael Schreiber © 2015 Wiley-VCH Verlag GmbH & Co KGaA Published 2015 by Wiley-VCH Verlag GmbH & Co KGaA www.pdfgrip.com 212 References 25 Ogden, J.S (2001) Introduction 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 to Molecular Symmetry, Oxford University Press, Oxford, ISBN: 978-0-1985-5910-8 Kittel, C (2004) Introduction to Solid State Physics, vol 8, John Wiley & Sons, Ltd, Weinheim, ISBN: 978-0-4714-1526-8 Bechstedt, F (2003) Principles of Surface Science, Springer-Verlag, Berlin Kresse, G and Furthmüller, J (1996) Comput Mater Sci., 6, 15 Onida, G., Reining, L., and Rubio, A (2002) Rev Mod Phys., 74, 601 Hahn, P.H., Schmidt, W., and Bechstedt, F (2002) Phys Rev Lett., 88, 016402 Marques, M et al (2006) TimeDependent Density Functional Theory, Springer-Verlag, Berlin, Heidelberg Saebo, S and Pulay, P (1987) J Chem Phys., 86, 914 Werner, H.-J., Manby, F., and Knowles, P (2003) J Chem Phys., 118, 8149 Lippert, G., Hutter, J., and Parrinello, M (1999) Theor Chem Acc., 103, 124, CP2K: http://cp2k.berlios.de Soler, J.M et al (2002) J Phys Condens Matter, 14, 2745 Haynes, P.D., Mostofi, A.A., Skylaris, C.-K., and Payne, M.C (2006) J Phys Conf Ser., 26, 143 Bowler, D.R., Miyazaki, T., and Gillan, M.J (2002) J Phys Condens Matter, 14, 2781 Goedecker, S (1999) Rev Mod Phys., 71, 1085 Warshel, A and Levitt, M (1976) J Mol Biol., 103, 227 Tersoff, J (1988) Phys Rev B, 37, 6991 van Duin, A.C.T., Dasgupta, S., Lorant, F., and Goddard, W.A (2001) J Phys Chem A, 105, 9396 van Duin, A et al (2003) J Phys Chem A, 107, 3803 Fogarty, J et al (2010) J Chem Phys., 132, 174704 Scott, M and Catlow, R (2008) Nat Mater., 7, 937 Pannetier, J., Bassas-Alsina, J., Rodriguez-Carvajal, J., and Caignaert, V (1990) Nature, 346, 343 46 Doll, K., Schön, J., and Jansen, M 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 (2007) Phys Chem Chem Phys., 9, 6128 Wales, D.W and Scheraga, H.A (1999) Science, 285, 1368 Coley, D (1999) An Introduction to Genetic Algorithms for Scientists and Engineers, World Scientific Publishing, Singapore Praprotnik, M., Site, L.D., and Kremer, K (2008) Annu Rev Phys Chem., 59, 545 Bolhuis, P., Chandler, D., Dellago, C., and Geissler, P (2002) Annu Rev Phys Chem., 53, 291 Dellago, C., Bolhuis, P., and Geissler, P (2002) Adv Chem Phys., 123, Henkelman, G., Johannesson, G., and Jonsson, H (2000) Methods for Finding Saddle Points and Minimum Energy Paths, in: Progress on Theoretical Chemistry and Physics (ed S.D Schwartz), Kluwer Academic Publishers, Amsterdam, pp 269–300, ISBN: 978-0-7923-6687-4 Abashkin, Y and Russo, N (1994) J Chem Phys., 100, 4477 Henkelman, G and Jonsson, H (1999) J Chem Phys., 111, 7010 Jonsson, H., Mills, G., and Jacobsen, K.W (1998) Nudged elastic band method for finding minimum energy paths of transitions, in Classical and Quantum Dynamics in Condensed Phase Simulations (eds B.J Berne, G Ciccotti, and D.F Coker), World Scientific Publishing, Singapore, pp 385–404, ISBN: 978-9-8102-3498-0 Ionova, I and Carter, E (1993) J Chem Phys., 98, 6377 Miron, R and Fichthorn, K (2001) J Chem Phys., 115, 8742 Verlet, L (1967) Phys Rev., 159, 98 Verlet, L (1968) Phys Rev., 165, 201 Hockney, R.W and Eastwood, J.W (1981) Computer Simulation Using Particles, McGraw-Hill, New York Haberland, R., Fritzsche, S., Peinel, G., and Heinzinger, K (1995) Molekulardynamik, Vieweg, Braunschweig, ISBN: 3-528-06429-3 Schlegel, H.B (1982) J Comput Chem., 3, 214 www.pdfgrip.com References 63 Head, J.D and Zerner, M.C (1985) 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 Chem Phys Lett., 122, 264 Buckingham, R.A (1938) Proc R Soc London, A 168, 264 Stockmayer, W.H (1941) J Chem Phys., 9, 398 Chenoweth, K., van Duin, A.C.T., and Goddard, W.A (2008) J Phys Chem A, 112, 1040 Böhm, O (2014) Reinigung und Reparatur geschädigter “ultra-low-kMaterialien” – eine ab initio Studie Dissertation, Technical University Chemnitz van Duin, A.C.T., Baas, J.M.A., and van de Graaf, B (1994) J Chem Soc., Faraday Trans., 90, 2881 Born, M and Oppenheimer, J (1927) Ann Phys., 84, 457a Pickett, W.E (1989) Comput Phys Rep., 9, 115 Feynman, R (1939) Phys Rev., 56, 340 Ritz, W (1909) J Reine Angew Math., 135, Pulay, P (1982) J Comput Chem., 3, 556 Hohenberg, P and Kohn, W (1964) Phys Rev., 136, B864 Kohn, W and Sham, L (1965) Phys Rev., 140, A1133 Perdew, J and Levy, M (1983) Phys Rev Lett., 51, 1884 Hedin, L and Lundqvist, S (1969) Solid State Phys., 23, Engel, G and Pickett, W (1996) Phys Rev B, 54, 8420 Sham, L and Schlüter, M (1983) Phys Rev Lett., 51, 1888 Martin, R (2004) Electronic Structure: Basic Theory and Practical Methods, Cambridge University Press, Cambridge, ISBN: 978-0-5217-8285-2 Chan, M and Ceder, G (2010) Phys Rev Lett., 105, 196403 Ramirez-Solis, A (2014) Comput Chem., 2, 31 von Barth, U and Hedin, L (1972) J Phys C: Solid State Phys., 5, 1629 Vosko, S.H., Wilk, L., and Nusair, M (1980) Can J Phys., 58, 1200 Perdew, J.P and Zunger, A (1981) Phys Rev B, 23, 5048 Perdew, J.P and Wang, Y (1992) Phys Rev B, 45, 13244 87 Becke, A.D (1988) Phys Rev A, 38, 3098 88 Perdew, J.P., Burke, K., and Ernzerhof, M (1996) Phys Rev Lett., 77, 3865 89 Kganyago, K and Ngoepe, P (1999) Mol Simul., 22, 39 90 Becke, A.D (1993) J Chem Phys., 98, 1372 91 Perdew, J.P., Ernzerhof, M., and Burke, K (1996) J Chem Phys., 105, 9982 92 Kim, K and Jordan, K.D (1994) J Phys Chem., 98, 10089 93 Lee, C., Yang, W., and Parr, R.G (1988) Phys Rev B, 37, 785 94 Heyd, J., Scuseria, G.E., and Ernzerhof, M (2003) J Chem Phys., 118, 8207 95 Heyd, J and Scuseria, G.E (2004) J Chem Phys., 121, 1187 96 VandeVondele, J et al (2005) Com- 97 98 99 100 101 102 103 104 105 106 107 put Phys Comm., 167, 103, CP2K: http://cp2k.berlios.de Leitsmann, R., Schmidt, W.G., Hahn, P.H., and Bechstedt, F (2005) Phys Rev B, 71, 195209 Heiskanen, M., Torsti, T., Puska, M., and Nieminen, R (2001) Phys Rev B, 63, 245106 Briggs, E.L., Sullivan, D.J., and Bernholc, J (1996) Phys Rev B, 54, 14362 Andrade, X et al (2012) J Phys Condens Matter, 24, 233202 Wang, L.-W (2008) A Brief Comparison Between Grid Based Real Space Algorithms and Spectrum Algorithms for Electronic Structure Calculations, Lawrence Berkeley National Laboratory, Berkeley, http://escholarship.org/uc/item/9bg6t4tg (accessed 30 January 2015) Giannozzi, P et al (2009) J Phys Condens Matter, 21, 395502, http://www.quantum-espresso.org Kresse, G and Furthmüller, J (1996) Phys Rev B, 54, 11169 Gonze, X et al (2009) Comput Phys Comm., 180, 2582 Gonze, X et al (2005) Z Kristallogr., 220, 558 Davidson, E.R and Feller, D (1986) Chem Rev., 86, 681 Ditchfield, R., Hehre, W.J., and Pople, J.A (1971) J Chem Phys., 54, 724 213 www.pdfgrip.com 214 References 108 Dunning, T.H (1989) J Chem Phys., 109 110 111 112 113 114 115 116 117 118 90, 1007 Gaussian 09, Revision D.01, Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D J (2009) Gaussian Inc., Wallingford, CT Ordejon, P., Artacho, E., and Soler, J.M (1996) Phys Rev B, 53, R10441 Schmidt, M et al (1993) J Comput Chem., 14, 1347 Gordon, M and Schmidt, M (2005) Advances in electronic structure theory: GAMESS a decade later, in Theory and Applications of Computational Chemistry: The First Forty Years (eds C Dykstra, G Frenking, K Kim, and G.E Scuseria), Elsevier, Amsterdam, pp 1167–1189 Lippert, G., Hutter, J., and Parrinello, M (1999) Theor Chem Acc., 103, 124 Layzer, A.J (1963) Phys Rev., 129, 897 Pulci, O et al (1999) Phys Rev B, 60, 16758 Hedin, L (1965) Phys Rev., 139, A796 Romaniello, P., Guyot, S., and Reining, L (2009) J Chem Phys., 131, 154111 Romaniello, P., Bechstedt, F., and Reining, L (2012) Phys Rev B, 85, 155131 119 Atalla, V et al (2013) Phys Rev B, 88, 165122 120 Fuchs, F et al (2007) Phys Rev B, 76, 115109 121 Förster, D., Koval, P., and 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 Sanchez-Portal, D (2011) J Chem Phys., 135, 074105 Hughes, J and Sipe, J (1996) Phys Rev B, 53, 10751 Shkrebtii, A., Hughes, J., Sipe, J., and Pulci, O (1998) Thin Solid Films, 313–314, 574 Albrecht, S (1999) Optical absorption spectra of semiconductors and insulators: Ab initio calculation of many-body effects PhD thesis, Ecole Polytechnique, Paris Ramos, L.E., Weissker, H.-C., Furthmüller, J., and Bechstedt, F (2005) Phys Status Solidi B, 15, 3053 Mauri, F and Car, R (1995) Phys Rev Lett., 75, 3166 Bechstedt, F., Weissker, H.-C., Ramos, L., and Furthmüller, J (2004) Phys Status Solidi C, 1, 163 Runge, E and Gross, E.K.U (1984) Phys Rev Lett., 52, 997 Ullrich, C.A (2011) Time-Dependent Density-Functional Theory: Concepts and Applications, Oxford Graduate Texts, Oxford University Press, Oxford, ISBN: 978-0-1995-6302-9 Pople, J.A., Head-Gordon, M., and Raghavachari, K (1987) J Chem Phys., 87, 5968 Head-Gordon, M., Rico, R.J., Oumi, M., and Lee, T.J (1994) Chem Phys Lett., 219, 21 Werner, H.-J and Knowles, P (1988) J Chem Phys., 89, 5803 Cremer, D (2013) Wiley Interdiscip Rev Comput Mol Sci., 3, 482 Kümmel, H.G (2003) Int J Mod Phys B, 17, 5311 Møller, C and Plesset, M.S (1934) Phys Rev., 46, 618 Leininger, M.L., Allen, W.D., Schaefer, H.F III, and Sherrill, C.D (2000) J Chem Phys., 112, 9213 Yang, S and Cho, M (2008) Appl Phys Lett., 93, 043111 Fish, J (ed.) (2009) Multiscale Methods: Bridging the Scales in Science and www.pdfgrip.com References 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 Engineering, Oxford University Press, Oxford, ISBN: 978-0-1992-3385-4 Riniker, S., Allison, J.R., and van Gunsteren, W.F (2012) Phys Chem Chem Phys., 14, 12423 Singh, U and Kollman, P (1986) J Comput Chem., 7, 718 Gao, J., Amara, P., Alhambra, C., and Field, M (1998) J Phys Chem A, 102, 4714 Groenhof, G (2013) Introduction to QM/MM Simulations, in Biomolecular Simulations – Methods and Protocols (eds L Monticello and E Salonen), Springer Science+Business Media, New York, ISBN: 978-1-6270-3016-8 Eyring, H (1935) J Chem Phys., 3, 107 Laio, A and Parrinello, M (2002) Proc Natl Acad Sci U.S.A., 99, 12562 Liu, Y (2008) Improvement in metadynamics simulations: the essential energy space random walk and the WangLandau recursion Electronic Theses, Treatises and Dissertations Paper 1161, Florida State University, Tallahassee Jonsson, H and Mills, G (1994) Phys Rev Lett., 72, 1124 Mills, G., Jonsson, H., and Schenter, G (1995) Surf Sci., 324, 325 Henkelman, G., Uberguaga, B., and Jonsson, H (2000) J Chem Phys., 113, 9901 Henkelman, G and Jonsson, H (2000) J Chem Phys., 113, 9978 Moore, G.E (1998) Proc IEEE, 86, 82, reprint from (1965) Electronics, 38, 114–117 Zhang, Z and Yates(Jr), J.T (2012) Chem Rev., 112, 5520 Riel, H., Schmid, H., and Riess, W (2008) IEEE Trans Electron Devices, 55, 2827 Nadimi, E et al (2010) IEEE Electron Device Lett., 31, 881 Roy, D (1986) Quantum Mechanical Tunnelling and Its Applications, World Scientific Publishing, Singapore, ISBN: 978-9971-5-0024-5 Singer, P (1998) Semicond Int., 21, 90 Maex, K et al (2003) Appl Phys Rev., 93, 8793 Lee, W.W and Ho, P.S (1997) MRS Bull., 22, 19 158 Miyoshi, H et al (2004) Jpn J Appl Phys., 43, 498 159 Chapelon, L.L et al (2004) Microelec- tron Eng., 76, 160 Bohr, M.T., Chau, R.S., Ghani, T., and 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 Mistry, K (2007) IEEE Spectrum, http://spectrum.ieee.org/semiconductors/ design/the-highk-solution (accessed 30 January 2015) Wilk, G.D., Wallace, R.M., and Anthony, J.M (2001) J Appl Phys., 89, 5243 Lin, L and Robertson, J (2009) Appl Phys Lett., 95, 012906 Lin, L and Robertson, J (2009) Microelectron Eng., 86, 1743 Medina-Montes, M et al (2009) J Appl Phys., 106, 053506 Nadimi, E (2007) Quantum mechanical and atomic level ab initio calculation of electron transport through ultrathin gate dielectrics of metaloxide-semiconductor field effect transistors Dissertation, Technical University Chemnitz Nadimi, E et al (2011) J Phys Condens Matter, 23, 365502 Nadimi, E et al (2014) IEEE Trans Electron Devices, 61, 1278 Troullier, N and Martin, J (1991) Phys Rev B, 43, 1993 Hann, R., Suitch, P., and Pentecost, J (1985) J Am Ceram Soc., 65, C285 Peacor, D (1973) Z Kristallogr., 138, 274 Hull, R (ed.) (1999) Properties of Crystalline Silicon, Institute of Electrical Engineers, London Marlo, M and Milman, V (2000) Phys Rev B, 62, 2003 Monkhorst, H and Pack, J (1976) Phys Rev B, 13, 5188 Bersch, E et al (2008) Phys Rev B, 78, 085114 Muller, D.A et al (1999) Nature, 399, 758 Liu, X.-Y., Jovanovic, D., and Stumpf, R (2005) Appl Phys Lett., 86, 082104 Giustino, F., Bongiorno, A., and Pasquarello, A (2005) J Phys Condens Matter, 17, S2065 Fonseca, L and Knizhnik, A (2006) Phys Rev B, 74, 195304 215 www.pdfgrip.com 216 References 179 Prodhomme, P.-Y et al (2011) Appl 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 Phys Lett., 99, 022101 de Walle, C.G.V and Martin, R.M (1987) Phys Rev B, 35, 8154 Leitsmann, R and Bechstedt, F (2007) Phys Rev B, 76, 125315 Leitsmann, R., Ramos, L.E., and Bechstedt, F (2006) Phys Rev B, 74, 085309 Nadimi, E et al (2011) DPG Spring Meeting, Verhandl DPG (VI) 46, 1/HL85.51 Kang, C.Y et al (2009) IEEE Trans Device Mater Reliab., 9, 171 Heh, D et al (2006) Appl Phys Lett., 88, 152907 Liu, D and Robertson, J (2009) Appl Phys Lett., 94, 042904 Umezawa, N et al (2007) Appl Phys Lett., 91, 132904 Xiong, K., Robertson, J., Gibson, M., and Clark, S (2005) Appl Phys Lett., 87, 183505, http://spectrum.ieee org/semiconductors/design/the-highksolution Guha, S and Narayanan, V (2007) Phys Rev Lett., 98, 196101 Foster, A., Lopez, G.F., Shluger, A., and Nieminen, R (2002) Phys Rev B, 65, 174117 Robertson, J., Xiong, K., and Clark, J (2006) Thin Solid Films, 496, Tse, K., Xiong, K., and Robertson, J (2007) Microelectron Eng., 84, 2028 Broqvist, P and Pasquarello, A (2006) Appl Phys Lett., 89, 262904 Leitsmann, R., Plänitz, P., Nadimi, E., and Öttking, R (2013) IEEE Semiconductor Conference Dresden-Grenoble, vol 1, doi: 10.1109/ISCDG.2013.6656327 Nadimi, E et al (2012) DPG Spring Meeting, Verhandl DPG (VI) 47, 4/DF13.5 Öttking, R et al (2014) Phys Status Solidi A, 212, 547 Nadimi, E., Radehaus, C., Nakhmedov, E.P., and Wieczorek, K (2006) J Appl Phys., 99, 104501 Lee, S et al (2009) Thin Solid Films, 517, 3942 Chaabouni, H et al (2007) Microelectron Eng., 84, 2595 200 Smirnov, V.V et al (2007) J Appl Phys., 101, 053307 201 Gunško, V., Vedamuthu, M., 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 Henderson, G., and Blitz, J (2000) J Colloid Interface Sci., 228, 157 Oszinda, T., Schaller, M., and Schulz, S (2010) J Electrochem Soc., 157, H1140 Böhm, O et al (2010) J Phys Chem A, 115, 8282 VandeVondele, J and Hutter, J (2007) J Chem Phys., 127, 114105 Blöchl, P (1995) J Chem Phys., 103, 7422 Böhm, O et al (2013) Microelec Eng., 112, 63 Oszinda, T et al (2011) IEEE International Interconnect Technology Conference and 2011 Materials for Advanced Metallization (IITC/MAM), doi: 10.1109/IITC.2011.5940329 Fischer, T et al (2012) Microelectron Eng., 92, 53 Hoffmann, M and Reuter, K (2014) Top Catal., 57, 159 Yanagisawa, S., Uozumi, A., Hamada, I., and Morikawa, Y (2013) J Phys Chem C, 117, 1278 Deutschmann, O (ed.) (2011) Modeling and Simulation of Heterogeneous Catalytic Reactions: From the Molecular Process to the Technical System, John Wiley & Sons, Ltd, Weinheim, ISBN: 978-3-5273-2120-9 Reuter, K., Frenkel, D., and Scheffler, M (2004) Phys Rev Lett., 93, 116105 Stansfeld, P.J and Sansom, M.S (2011) Structure, 19, 1562 Sansom, M., Shrivastava, I., Ranatunga, K., and Smith, G (2000) Trends Biochem Sci., 25, 368 Bochevarov, A.D et al (2013) Int J Quantum Chem., 113, 2110 Rossmeisl, J et al (2007) J Electroanal Chem., 607, 83 Kim, S.-P., van Duin, A., and Shenoy, V (2011) J Power Sources, 196, 8590 Tachikawa, H (2014) Chem Phys Chem., 6, 1604 Stampfl, C (2005) Catal Today, 105, 17 Gece, G (2008) Corros Sci., 50, 2981 Ebenso, E et al (2010) Int J Quantum Chem., 110, 2614 www.pdfgrip.com References 222 Nunomura, N and Sunada, S (2013) 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 Arch Metall Mater., 58, 321, doi: 10.2478/v10172-012-0190-5 Madkour, L.H and Elroby, S.K (2014) J Corros Sci Eng., 17, preprint 4, ISSN: 1466-8858 Taylor, C.D (2011/2013) Patent US20130103366 A1, Serial No.: 279842 Domain, C (2006) J Nucl Mater., 351, Raabe, D et al (2007) Acta Mater., 55, 4475 Counts, W et al (2008) Phys Status Solidi B, 245, 2630 Countsa, W., Friak, M., Raabe, D., and Neugebauer, J (2009) Acta Mater., 57, 69 Friak, M et al (2011) Eur Phys J Plus, 126, 101, doi: 10.1140/epjp/i201111101-2 Neugebauer, J and Hickel, T (2013) WIREs Comput Mol Sci., 3, 438 Wolverton, C., Yan, X.-Y., Vijayaraghavan, R., and Ozolins, V (2002) Acta Mater., 50, 2187 Stampfl, C and Freemann, A (2005) Phys Rev B, 71, 024111 Sheng, S., Zhang, R., and Veprek, S (2011) Acta Mater., 59, 297 Hickel, T., Grabowski, B., Körmann, F., and Neugebauer, J (2012) J Phys Condens Matter, 24, 053202 Franzese, G et al (2001) Nature, 409, 692 Matsumoto, M., Saito, S., and Ohmine, I (2002) Nature, 416, 409 Ackland, G.J., Jones, A., and Noble-Eddy, R (2008) Mater Sci Eng., A, 481–482, 11 Cuthbertson, M.J and Poole, P.H (2011) Phys Rev Lett., 106, 115706 Binder, K (2013) Statistical Theories of Phase Transitions Materials Science and Technology, John Wiley & Sons Zhang, H et al (2014) Comput Mater Sci., 89, 242 Pickard, C.J and Needs, R.J (2011) J Phys Condens Matter, 23, 053201 Yamada, T (1999) Oxidation of Dimethyl-Ether and Ethylene in the Atmosphere and Combustion Environment, and Thermodynamic Studies on Hydrofluorocarbons Using ab initio 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 Calculation Methods PhD thesis, New Jersy Institute of Technology, Newark Johnson, M.A and Truong, T.N (1999) J Phys Chem A, 103, 8840 Ali, M., Dillstrom, V., Lai, J.Y., and Violi, A (2014) J Phys Chem A 118, 1067 Chirkov, Y.G., Rostokin, V.I., and Skundin, A.M (2011) Russ J Electrochem., 47, 768 Chakrabarti, S., Thakur, A.K., and Biswas, K (2013) Ionics, 19, 1515 Ramos-Sanchez, G., Callejas-Tovar, A., Scanlon, L., and Balbuena, P (2014) Phys Chem Chem Phys., 16, 743 Hofto, L.R., Sickle, K.V., and Cafiero, M (2008) Int J Quantum Chem., 108, 112 Barone, G et al (2008) J Biomol Struct Dyn., 26, 115 Srivastava, D., Menon, M., and Cho, K (2001) Comput Sci Eng., 3, 42 Delerue, C.J and Lannoo, M (2004) Nanostructures, Springer-Verlag, Heidelberg, ISBN: 978-3-540-20694-1 Agostini, G and Lamberti, C (2008) Characterization of Semiconductor Heterostructures and Nanostructures, Elsevier, Amsterdam, ISBN: 978-0-08055815-8 Massobrio, C., Bulou, H., and Goyhenex, C (2010) Advances in the Atomic-Scale Modeling of Nanosystems and Nanostructured Materials, Springer-Verlag, Berlin Heidelberg, ISBN: 978-3-6420-4650-6 Ciobanu, C.V., Wang, C.-Z., and Ho, K.-M (2013) Atomic Structure Prediction of Nanostructures, Clusters and Surfaces, John Wiley & Sons, Ltd, Weinheim, ISBN: 978-3-5274-0902-0 Gfrörer, O et al (1997) Mater Sci Eng., B, 43, 250 Ambacher, O (1998) J Phys D: Appl Phys., 31, 2653 Molnar, R., Götz, W., Romano, L., and Johnson, N (1997) J Cryst Growth, 178, 147 Segal, A et al (2004) J Cryst Growth, 270, 384 Chen, Z., Yan, H., Gan, Z., and Liu, S (2009) IEEE: Electronic Components and Technology Conference, p 1824, doi: 10.1109/ECTC.2009.5074266 217 www.pdfgrip.com 218 References 260 Mathis, S et al (2001) J Cryst Growth, 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 231, 371 Ning, X et al (1996) J Mater Res., 11, 580 Belabbas, I., Ruterana, P., Chen, J., and Nouet, G (2006) Philos Mag., 86, 2241 Plimpton, S (1995) J Comput Phys., 117, Aktulga, H.M., Fogarty, J.C., Pandit, S.A., and Grama, A.Y (2012) Parallel Comput., 38, 245 Böhm, O., Leitsmann, R., and Plänitz, P (2014) J Phys Chem A, to be published Yoder, C (2014) Wired Chemist: Common Bond Energies, http://www wiredchemist.com/chemistry/data/bond_ energies_lengths.html (accessed 30 January 2015) Bougrov, V., Levinshtein, M., Rumyantsev, S., and Zubrilov, A (2001) in Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe (eds M.E Levinshtein, S.L Rumyantsev, and M.S Shur), John Wiley & Sons, Inc., New York, pp 1–30, ISBN: 978-0-4713-5827-5 Zhao, C et al (2010) Sci China Phys Mech Astron., 53, 72 Hackert-Oschätzchen, M., Penzel, M., Plänitz, P., and Schubert, A (2012) Proceedings of the COMSOL Conference in Milan Röder, C et al (2013) J Phys D: Appl Phys., 46, 285302 Ji, X., Lee, K., and Nazar, L (2009) Nat Mater., 8, 500 Whittingham, M (2004) Chem Rev., 104, 4271 Wang, Y and Cao, G (2009) IEEE Nanatechnol Mag., 3, 1932 Whittingham, M (1975) J Electrochem Soc., 123, 315 Ichikawa, S., Hibino, M., and Yao, T (2009) J Electrochem Soc., 156, A299 Ichikawa, S., Hibino, M., and Yao, T (2007) Asian J Energy Environ., 8, 33 Wang, Y., Takahashi, K., Lee, K., and Cao, G (2006) Adv Funct Mater., 15, 1133 Zakharova, G.S and Volkov, V.L (2003) Russ Chem Rev., 72, 311 Londero, E and Schröder, E (2010) Phys Rev B, 82, 054116 280 Blum, R.-P et al (2007) Phys Rev Lett., 99, 226103 281 Ortmann, F., Bechstedt, F., and 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 Schmidt, W.G (2006) Phys Rev B, 73, 205101 Grimme, S (2006) J Comput Chem., 27, 1787 Dudarev, S.L et al (1998) Phys Rev B, 57, 1505 Lutfalla, S., Shapovalov, V., and Bell, A.T (2011) J Chem Theory Comput., 7, 2218 Ganduglia-Pirovano, M.V., Hofmann, A., and Sauer, J (2007) Surf Sci Rep., 62, 219 Islam, M.S and Fisher, C.A.J (2014) Chem Soc Rev., 43, 185 Zhou, F., Cococcioni, M., Kang, K., and Ceder, G (2004) Electrochem Commun., 6, 1144 Galy, J (1992) J Solid State Chem., 100, 229 Cocciantelli, J.M et al (1991) J Power Sources, 34, 103 Aydinol, M.K et al (1997) Phys Rev B, 56, 1354 Braithwaite, J.S et al (2000) J Mater Chem., 10, 239 Sanchez, J.M., Ducastelle, F., and Gratias, D (1984) Physica A, 128, 334 Feynman, R.P (1960) Caltech Eng Sci., 23, 22 Leitsmann, R and Bechstedt, F (2008) Phys Rev B, 78, 205324 Hirsch, A (2002) Angew Chem., 114, 1933 Iijima, S (2002) Phys B: Condens Matter, 323, Liu, K., Zhao, N., and Kumacheva, E (2011) Chem Soc Rev., 40, 656 Choi, D et al (2010) Adv Mater., 22, 2187 Barron, A.R and Hamilton, C.E (2012) Graphene (OpenStax CNX, http://cnx.org/contents/790bacf3-65124957-bbed-ac887a4fca7c44) (accessed 31 January 2015) Wagner, C and Harned, N (2010) Nat Photon., 4, 24 Brommer, K.D., Needels, M., Larson, B., and Joannopoulos, J.D (1992) Phys Rev Lett., 68, 1355 www.pdfgrip.com References 302 Schmidt, W.G., Bechstedt, F., Lu, W., 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 and Bernholc, J (2002) Phys Rev B, 66, 085334 Wang, Z et al (2013) J Phys Chem C, 117, 26060 Ashoori, R.C (1996) Nature, 379, 413 Schedelbeck, G., Wegscheider, W., Bichler, M., and Abstreiter, G (1997) Science, 278, 1792 Alferov, Z (2002) Nobel Lecture, Physics 1996–2000 (ed G Ekspong), World Scientific, Singapore, pp 413–441 Grundmann, M et al (1995) Phys Rev Lett., 74, 4043 Seufert, J et al (2001) Appl Phys Lett., 79, 1033 Leonard, D et al (1993) Appl Phys Lett., 63, 3203 Moison, J.M et al (1994) Appl Phys Lett., 64, 196 Stangl, J., Hol´y, V., and Bauer, G (2004) Rev Mod Phys., 76, 725 Springholz, G., Holy, V., Pinczolits, M., and Bauer, G (1998) Science, 282, 734 Simma, M et al (2006) Appl Phys Lett., 88, 201105 Heiss, W et al (2006) Appl Phys Lett., 88, 192109 Heiss, W et al (2007) J Appl Phys., 101, 081723 Leitsmann, R (2009) Ab-Initio Untersuchungen von Hetero- und Nanostrukturen ionischer Materialien, Südwestdeutscher Verlag für Hochschulschriften, Saarbrücken, ISBN: 978-3-8381-0804-9 Schwarzl, T et al (2008) Phys Rev B, 78, 165320 Ramos, L.E et al (2001) Phys Rev B, 63, 165210 Wei, S.-H and Zunger, A (1997) Phys Rev B, 55, 13605 Wei, S.-H and Zunger, A (1988) Phys Rev B, 37, 8958 Dziawa, P et al (2005) Phys Status Solidi C, 2, 1167 Martinez, G., Schlüter, M., and Cohen, M.L (1975) Phys Rev B, 11, 651 Kresse, G and Joubert, D (1999) Phys Rev B, 59, 1758 Wulff, G (1901) Z Kristallogr Mineral., 34, 449 325 Leitsmann, R et al (2006) New J Phys., 8, 317 326 Leitsmann, R and Bechstedt, F (2009) Phys Rev B, 80, 165402 327 Groiss, H (2006) Transmission elec- 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 tron microscopy of self-organised PbTe/CdTe nanocrystals Diploma thesis, Johannes-Kepler-Universität Linz Lazarides, A.A., Duke, C.B., Paton, A., and Kahn, A (1995) Phys Rev B, 52, 14895 Hochreiner, A et al (2011) Appl Phys Lett., 98, 021106 Guimaraes, A.P (ed.) (2009) Principles of Nanomagnetism, Springer-Verlag, Heidelberg, ISBN: 978-3-642-01481-9 Wolf, S.A et al (2001) Science, 294, 1488 Shinjo, T (ed.) (2009) Nanomagnetism and Spintronics, Elsevier, Oxford, ISBN: 978-0-4445-3114-8 Awschalom, D and Kikkawa, J (1999) Nature, 397, 139 Awschalom, D and Kikkawa, J (1999) Phys Today, 52, 33 Burkard, G., Loss, D., and DiVincenzo, D (1999) Phys Rev B, 59, 2070 Ohno, H (1998) Science, 281, 951 Zutic, I and Fabian, J (2007) Nature, 447, 268 Sato, K and Katayama-Yoshida, H (2002) Semicond Sci Technol., 17, 367 Beeler, F., Andersen, O., and Scheffler, M (1990) Phys Rev B, 41, 1603 Zunger, A and Lindefelt, U (1983) Phys Rev B, 27, 1191 Katayama-Yoshida, H and Zunger, A (1985) Phys Rev B, 31, 8317 Zhang, Z., Partoens, B., Chang, K., and Peeters, F (2008) Phys Rev B, 77, 155201 Zhang, R.-Q (2014) Growth Mechanisms and Novel Properties of Silicon Nanostructures from QuantumMechanical Calculations, SpringerVerlag, Heidelberg, ISBN: 978-3-64240904-2 Wu, H., Kratzer, P., and Scheffler, M (2007) Phys Rev Lett., 98, 117202 Wu, W., Tsai, C., and Chen, L (2007) Appl Phys Lett., 90, 043121 219 www.pdfgrip.com 220 References 346 Ramos, L.E., Weissker, H., Furthmüller, 347 348 349 350 351 J., and Bechstedt, F (2005) Phys Status Solidi B, 242, 3053 Francis, P and Ghaisas, S.V (2013) Silicon, 5, 255 Panse, C., Leitsmann, R., and Bechstedt, F (2010) Phys Rev B, 82, 125205 Leitsmann, R., Panse, C., Küwen, F., and Bechstedt, F (2009) Phys Rev B, 80, 104412 Dudarev, S et al (1998) Phys Rev B, 57, 1505 Rödl, C., Fuchs, F., Furthmüller, J., and Bechstedt, F (2008) Phys Rev B, 77, 184408 352 Leitsmann, R et al (2010) J Chem Theory Comput., 6, 353 353 Erwin, S et al (2005) Nature, 436, 91 354 Dalpian, G and Chelikowsky, J (2006) Phys Rev Lett., 96, 226802 355 Arantes, J., Dalpian, G., and Fazzio, A (2008) Phys Rev B, 78, 045402 356 Cantele, G et al (2005) Phys Rev B, 72, 113303 357 Caldas, M.J and Fazzio, A (1983) Rev Bras Fis., 13, 90 358 Mejia-Lopez, J., Romero, A., Garcia, M., and Moran-Lopez, J (2006) Phys Rev B, 74, 140405 www.pdfgrip.com 221 Index a Arrhenius equation 112 angular momentum 34 antiferromagnetic (AFM) coupling 208 atomic model 33 atomistic simulation techniques 162 azimuthal quantum number 34 b back-end-of-line (BEoL) 121 band alignment 135 – gate stack design 127, 128 – Si layers 132 – TiN layers 132 – SiO2 layers 134 – HfO2 layers 136 band bending 69 band structure 53, 54, 56 BFGS 66 biological processes 159, 160 Bloch theorem 53, 54, 56 bond breakage 73 bond-order 72 bonding angles 69 Born–Oppenheimer approximation 77–79 bra-ket notation 22, 27 Brillouin zone sampling 144, 152 Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm 66 Buckingham potential 71 c canonical ensemble 16 Cartesian coordinates catalysis 159 cathode materials 175 cell voltage 178, 181, 182 charge transition level 145, 146 chemical processes 159 chemical properties 33 chemical reactions 14 chemical synthesis 160 classical FF approach 68 classical simulation methods 65 coarse-grained approaches 105–107 cobalt-vanadium oxide 176 combustions 162 complementary metal-oxide semiconductor (CMOS) technology 121 complementary operators 31 complex numbers 17, 18 configuration interaction (CI) 102 conjugate gradient methods 66 conservative force core dislocations 172 corrosion 161 coating 163 Coulomb potential 33, 70, 74 coupled cluster (CC) 102, 103 cut-off energy 74 d deep defect states (DDS) 141 density function 28 density functional theory (DFT) 83–85 DFT see density functional theory (DFT) DFT-LDA approach 189 direct-tunneling (DT) current 126 dissociation energy 73 e eigenfunction 19, 26 eigenvalue 19, 26, 35 electrolysis 161 In-vitro Materials Design: Modern Atomistic Simulation Methods for Engineers, First Edition Roman Leitsmann, Philipp Plänitz, and Michael Schreiber © 2015 Wiley-VCH Verlag GmbH & Co KGaA Published 2015 by Wiley-VCH Verlag GmbH & Co KGaA www.pdfgrip.com 222 Index electrostatic interactions 70 endotherm 14 energy conservation 7, enthalpy 13, 15 entropy 12, 14 equation of motion 5, 6, 65 – many body systems 10, 11 equilibrium crystal shape (ECS) 190, 191 Euler’s formula 18 exchange–correlation energy 88–91 excitonic effects 100 exotherm 14 expectation value 28, 30 external forces 10 extreme ultraviolet (EUV) lithography 185 f Fermi energy 146, 148 ferromagnetic (FM) coupling 208 FF potentials 67, 72 force-field (FF) approach 65 – bond contributions 69 – electrostatic interaction 70 – Lennard-Jones (LJ) potential 71 – nonbonded interactions 69, 70 formation energy of defects 146 Fourier transformations 17, 20, 22, 31 free energy 14 friction energy 8, front-end-of-line (FEoL) 121 g gallium nitride (GaN) 163 GaN crystal growth 163 GaN crystallization process 171 Gibbs energies 14, 182 Gibbs fundamental equation 13 growth simulations 170, 172 GW approximation 97–99 h Hamilton function, Hamiltonian 11, 26, 27, 33 Hartree–Fock (HF) method 80–83 Hellmann–Feynman forces 178, 203 Hermitian operators 20 hexamethyldisilazane (HMDS) 150 HF method see Hartree–Fock (HF) method high-k metal gate (HKMG) stack 127 Hund’s rules 39 hybride vapor phase epitaxy (HVPE) 164 hydrogen atom 33 hydrogen-bridge bonds 69, 74 hyperfine structure 38 i imaginary unit 17 integrated circuits 121 intercalation 162 intermolecular forces 70 internal energy 12 internal forces 10 isothermal-isobaric ensemble 16 k kinetic energy 33 k-space 22, 27 l Lamb shift 38 Laplace operator 21 leapfrog algorithm 66 Legendre transformation 13 Lennard-Jones (LJ) potential 71 Lix V2 O5 , structural properties 178, 180 light-emitting diodes (LEDs) 198 linear operator 19 lithium (Li) ion battery systems 175 low- or ultra-low k (ULK) dielectric constant materials 127 m magnetic properties 206, 208, 209 magnetic quantum number 34 many body interactions 69 many body systems material deposition 162 matter waves 25 measurable quantities 28 metal-gate stack 123 metal-oxide semiconductor field-effect transistors (MOSFETs) 121 microcanonical ensemble 16 microelectronic CMOS technology 121 – fabrication steps, FEoL and BEoL 122 – high-k gate stacks 127 MM simulation 67 Møller–Plesset perturbation theory (MPn) 103 molecular mechanics 65 molecular orbital theory 39–43, 45, 46 Moore’s law 125 Morse potential 69, 74 Monte Carlo methods 113 n Nabla operator 21 nanomagnetism 199 www.pdfgrip.com Index nanostructured materials – description 183–185, 187 – embedded PbTe quantum dots 187 NEB see nudged elastic band method Newton’s equations of motion 65 Newtonian mechanics – thermodynamics see thermodynamics nonbonded interactions 69 nudged elastic band method 113–115 numerical integration 65 o operators 18 orbital functions 36 p p-type and n-type MOSFETs 121 Pauli exclusion principle 38, 39, 70 Pauli repulsion 71 PbTe/CdTe system 188, 190 periodic functions 21, 22 phase transition 162 post-HF methods 101 potential energy landscape 8, 66 pressure 12 principal quantum number 34 probability density 29 probability distribution 32 projector augmented wave (PAW) 190 pseudopotentials 77, 79 q QM/MM approaches 108, 109 quantum confined Stark effect 195–198 quantum confinement effect 197 quantum dots (QDs) 185 quantum mechanics (QM) 25 – advantages and drawbacks of HF and DFT 96 – atomic model 33–35, 37–39 – Born–Oppenheimer approximation 77–79 – chemical properties and quantum theory 33 – DFT method 83–85 – expectation value and uncertainty principle 28–31 – heuristic derivation 25, 26 quantum numbers 34 quantum-confined Stark effect (QCSE) 197 quasiparticle shift 97–99 r reactive force-field (FF) approach 72 – chemical bonding characteristics 71 – ReaxFF method 72 – training schemes 75 – van-der-Waals interaction potential 74 real space function 21, 23 real space representation 21, 27 ReaxFF method 72, 76 ReaxFF parameter training scheme 166, 168 reference potential method 136 rumpling effect 194 s Schrödinger equation 26, 27 scissors shift 99, 100 shallow defect states (SDS) 141 short channel effect (SCE) 125 silicon carbide (SiC) 164 silicon quantum dots 200, 201, 203 silylation process 153–155 simple FF-potentials 69 spherical coordinates 33 spin quantum number 38 spin-paired electrons 39 spin–orbit interaction 38 stationary Schrödinger equation 27, 28 stationary state 27 statistical mechanics 16 steepest descent algorithm 66 Stockmayer potential 71 stress-induced leakage current (SILC) 126 stretching 69, 73 supercell method 132, 133 supercell or slab method 132 symmetry and Bravais lattice 47 – Bloch theorem and band structure 53, 54, 56 – crystals 49–51, 53 – molecules 47–49 t TDDFT 100, 101 – wave function see wave function thermodynamics 11 – canonical ensemble 16 – energy and entropy changes 15 – first law 12, 14 – Gibbs energy 14 – internal energy 13 – isothermal-isobaric ensemble 16 – microcanonical ensemble 16 – potential 13 223 www.pdfgrip.com 224 Index thermodynamics (contd.) – second law 12 time-dependent DFT (TDDFT) 100, 101 torsions 69, 74 total energy 25 training scheme 75 training structures 168, 170 trajectory transition state theory (TST) – reaction rate constant 112 – Gibbs (free) energy 113 – transition energy 112 trap-assisted tunneling (TAT) 126, 143 TST see transition state theory (TST) u uncertainty principle 28, 30 v van-der-Waals interactions 70, 71, 73, 177 vanadium 177 vanadium oxide 176 vectors and scalar product 22 Verlet algorithm 66 Vienna ab initio simulation package (VASP) 189 w wave function 18, 25 – plane wave representation 92–96 – real-space grid 91, 92 Wigner-Seitz cells 49, 51 work function 127 Wulff construction 190, 191 www.pdfgrip.com WILEY END USER LICENSE AGREEMENT Go to www.wiley.com/go/eula to access Wiley’s ebook EULA ... certain threedimensional coordinate system For simplicity, we use in this book a simple Cartesian coordinate system In- vitro Materials Design: Modern Atomistic Simulation Methods for Engineers, ... mathematical concepts can skip this part and look up certain points later if necessary In- vitro Materials Design: Modern Atomistic Simulation Methods for Engineers, First Edition Roman Leitsmann, Philipp... calculation rules to obtain the quantities E and

Ngày đăng: 01/06/2022, 08:28