1. Trang chủ
  2. » Khoa Học Tự Nhiên

Flowing matter

313 6 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Cấu trúc

  • Preface

  • Contents

  • 1 Numerical Approaches to Complex Fluids

    • 1.1 Introduction to Complex Fluids and Rheology

    • 1.2 Macroscopic Approaches

      • 1.2.1 Eulerian/Eulerian Methods

        • Inelastic Shear-Thinning/Thickening Fluids

        • Viscoelastic Fluids

        • Plastic Effects

        • Fluid–Structure Interaction

    • 1.3 Microscopic Approaches

      • 1.3.1 Eulerian/Lagrangian Methods

        • Immersed Boundary Methods for Suspensions of Rigid Particles

        • Front-Tracking Methods for Suspensions of Deformable Droplets

      • 1.3.2 Eulerian/Eulerian Methods

        • Volume of Fluids

        • Level-Set Method

        • Phase-Field Methods

      • 1.3.3 Other Approaches

    • 1.4 Conclusions

    • References

  • 2 Basic Concepts of Stokes Flows

    • 2.1 Introduction

    • 2.2 Navier–Stokes and Stokes Equations

      • 2.2.1 Navier–Stokes Equations

      • 2.2.2 Stokes Flows

    • 2.3 Reversibility of Fluid Flows

      • 2.3.1 Examples of Reversibility

      • 2.3.2 Irreversible Trajectories in Stokes Flow

    • 2.4 Minimum Energy Dissipation Theorem

      • 2.4.1 Statement

      • 2.4.2 An Application of the Minimum Energy Dissipation Theorem

    • 2.5 Limits of the Stokes Approximation

      • 2.5.1 Example of a System Where the Stokes Approximation Does Not Work

        • Other Linear Flow Equations

      • 2.5.2 Departures from Reversibility Caused by Inertia

      • 2.5.3 Accelerating Fluid Example

    • 2.6 Conclusions

    • References

  • 3 Mesoscopic Approach to Nematic Fluids

    • 3.1 Introduction to Nematic Fluids

    • 3.2 Nematic Order Parameters

    • 3.3 Landau–de Gennes Free Energy Approach

      • 3.3.1 Landau Theory of Nematic Phase Transition

      • 3.3.2 Elastic Free Energy

      • 3.3.3 Surface Anchoring

      • 3.3.4 Electric Field Effects

      • 3.3.5 Magnetic Field Effects

    • 3.4 Topological Defects

      • 3.4.1 Umbilic Defects

      • 3.4.2 Basics of Topological Theory of Defects

    • 3.5 Nematodynamics

      • 3.5.1 Ericksen Stress Tensor

      • 3.5.2 Ericksen–Leslie–Parodi Approach

      • 3.5.3 Beris–Edwards Model

      • 3.5.4 Qian–Sheng Model

      • 3.5.5 Towards Active Nematics

    • 3.6 Nematic Microfluidics

      • 3.6.1 Nematic Flows in Channels

      • 3.6.2 Nematic Microfluidic Junctions

      • 3.6.3 Colloidal Particles in Nematic Microfluidic Environment

    • 3.7 Nematic Colloids

      • 3.7.1 Single Spherical Particle

      • 3.7.2 Interparticle Interactions

      • 3.7.3 Assembly and Self-assembly of Colloidal Structures

      • 3.7.4 Complex-Shaped and Topological Colloids

    • 3.8 Conclusions

    • References

  • 4 Amphiphilic Janus Particles at Interfaces

    • Acronyms

    • 4.1 Introduction

    • 4.2 Short History of Asymmetric Janus Particles

    • 4.3 General Synthetic Routes

      • 4.3.1 Masking and Asymmetric Modification

      • 4.3.2 Seeded Emulsion Polymerisation and Phase Separation

      • 4.3.3 Microfluidic and Capillary Electro-Jetting Methods

      • 4.3.4 Polymer Co-precipitation and Phase Separation

    • 4.4 Tuning the Surface Polarity in JPs

    • 4.5 Interfacial Activity and Adsorption at Interfaces

      • 4.5.1 Contact Angle and Interfacial Adsorption Energies of HPs vs. JPs

      • 4.5.2 Inter-Particle Interaction at Interfaces vs. Lowering the Interfacial Tension

      • 4.5.3 Activation and Adsorption Energies of JPs Spontaneously Adsorbing at Interfaces

    • 4.6 Pickering Emulsions: Arrested JPs at Interfaces

    • 4.7 Self-Assembly of Janus Particles

    • 4.8 JP-Based Nanomotors

    • 4.9 Conclusions

    • References

  • 5 Upscaling Flow and Transport Processes

    • 5.1 Introduction

    • 5.2 Flow Through Porous and Heterogeneous Media

      • 5.2.1 Darcy's Law

      • 5.2.2 Extensions of Darcy's Law

      • 5.2.3 Heterogeneous Media

    • 5.3 Macroscopic Transport Models

      • 5.3.1 Fickian Dispersion

      • 5.3.2 Anomalous Dispersion

        • Continuous Time Random Walks

        • Multi-Rate Mass Transfer

      • 5.3.3 Mixing and Chemical Reactions

        • Mixing, Diffusion and Dispersion

        • Chemical Reactions

    • 5.4 Multiphase and Surface Processes

      • 5.4.1 Mass and Heat Transfer

        • From Surface Processes to Averaged Reaction Rates

    • 5.5 Conclusions

    • Appendix A: Homogenisation and Two-Scale Expansions

    • Appendix B: Volume/Ensemble Averaging

    • References

  • 6 Recent Developments in Particle Tracking Diagnosticsfor Turbulence Research

    • 6.1 Introduction

    • 6.2 A Model-Free Calibration Method

      • 6.2.1 Principle

      • 6.2.2 Practical Implementation

      • 6.2.3 Results: Comparison with Tsai Model

      • 6.2.4 Discussion

    • 6.3 Particle Tracking Algorithms

      • 6.3.1 Shadow Particle Tracking Velocimetry

        • Experimental Setup

        • The Trajectory Stereo-Matching Approach

        • Flow Measurements

      • 6.3.2 Improved Four-Frame Best Estimate

    • 6.4 Noise Reduction in Post-Processing Statistical Analysis

      • 6.4.1 Lagrangian Auto-Correlation Functions

        • Results

        • Discussion

      • 6.4.2 Eulerian Structure Functions

        • Method

        • Results

        • Discussion

    • 6.5 Conclusions

    • References

  • 7 Numerical Simulations of Active Brownian Particles

    • 7.1 Introduction

    • 7.2 Passive Brownian Motion

    • 7.3 Active Particles

      • 7.3.1 Active Brownian Motion

      • 7.3.2 Run-and-Tumble Motion

      • 7.3.3 Chiral Active Brownian Motion

      • 7.3.4 Gaussian Noise Reorientation Model

    • 7.4 More Complex Models

      • 7.4.1 Non-Spherical Particles

      • 7.4.2 External Fields

      • 7.4.3 Interacting Particles

      • 7.4.4 Multiplicative Noise

    • 7.5 Numerical Examples

      • 7.5.1 Living Crystals

      • 7.5.2 Colloids with Short-Range Aligning Interaction

    • 7.6 Conclusions

    • References

  • 8 Active Fluids Within the Unified Coloured Noise Approximation

    • 8.1 Introduction

      • 8.1.1 The Genesis of the UCNA Model of Active Particles

    • 8.2 The Unified Coloured Noise Approximation (UCNA)

      • 8.2.1 Kinetic Approach

      • 8.2.2 Stationary Solution in the Absence of Current

      • 8.2.3 Fox Approximation

      • 8.2.4 Entropy Production in UCNA

      • 8.2.5 H-Theorem

    • 8.3 Born–Green–Yvon Hierarchy in the Steady State

    • 8.4 Active Pressure

    • 8.5 Velocity Correlations

    • 8.6 Simple Applications

      • 8.6.1 Active Elastic Dumbbells

      • 8.6.2 Pressure of N Noninteracting Active Particles Surrounded by Harshly Repulsive Walls

    • 8.7 Active Particles in a Time-Dependent Potential

      • 8.7.1 Effective Potential

      • 8.7.2 Dynamical UCNA and Particle Density Profile

      • 8.7.3 Average Drag Force

    • 8.8 Conclusions

    • Appendix 1: Entropy Production and Heat Flux in the GCN

    • Appendix 2: Absence of Detailed Balance Condition in the GCN

    • References

  • 9 Quadrature-Based Lattice Boltzmann Models for RarefiedGas Flow

    • 9.1 Introduction

    • 9.2 Generalities

    • 9.3 One-Dimensional Quadrature-Based LB Models

      • 9.3.1 Full-Range Gauss–Hermite Quadrature

      • 9.3.2 Half-Range Gauss–Hermite Quadrature

    • 9.4 LB Models in the Three-Dimensional Momentum Space

      • 9.4.1 Reduced Distributions

      • 9.4.2 Mixed Quadrature LB Models with Reduced Distribution Functions

      • 9.4.3 The Lattice Boltzmann Equation

      • 9.4.4 Non-Dimensionalisation Procedure

    • 9.5 Simulation Results

      • 9.5.1 Couette Flow Between Parallel Plates

      • 9.5.2 Force-Driven Poiseuille Flow Between Parallel Plates

    • 9.6 Conclusions

    • Appendix: Numerical Scheme

    • References

  • Index

Nội dung

Ngày đăng: 30/05/2022, 20:39