Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 32 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
32
Dung lượng
164,14 KB
Nội dung
MEI STRUCTURED MATHEMATICS EXAMINATION FORMULAE AND TABLES Arithmetic series General (kth) term, last (nth) term, l = Sum to n terms, Geometric series General (kth) term, Sum to n terms, Sum to infinity Infinite series f(x) uk = a + (k – 1)d un = a + (n – l)d – – Sn = n(a + l) = n[2a + (n – 1)d] 2 x2 xr = f(0) + xf'(0) + –– f"(0) + + –– f (r)(0) + 2! r! f(x) f(a + x) uk = a r k–1 a(1 – r n) a(r n – 1) Sn = –––––––– = –––––––– 1–r r–1 (x – a)2 (x – a)rf(r)(a) = f(a) + (x – a)f'(a) + –––––– f"(a) + + –––––––––– + r! 2! x2 xr = f(a) + xf'(a) + –– f"(a) + + –– f(r)(a) + 2! r! x2 xr ex = exp(x) = + x + –– + + –– + , all x 2! r! a S∞ = ––––– , – < r < 1–r x2 x3 xr = x – –– + –– – + (–1)r+1 –– + , – < x р r sin x x3 x5 x 2r+1 = x – –– + –– – + (–1)r –––––––– + , all x 3! 5! (2r + 1)! cos x x2 x4 x 2r = – –– + –– – + (–1)r –––– + , all x 2! 4! (2r)! arctan x x3 x5 x 2r+1 = x – –– + –– – + (–1)r –––––– + , – р x р 2r + General case sinh x n(n – 1) n(n – 1) (n – r + 1) (1 + x)n = + nx + ––––––– x2 + + ––––––––––––––––– xr + , |x| < 1, 2! 1.2 r n∈ޒ x3 x5 x 2r+1 = x + –– + –– + + –––––––– + , all x 3! 5! (2r + 1)! cosh x x2 x4 x 2r = + –– + –– + + –––– + , all x 2! 4! (2r)! artanh x x3 x5 x 2r+1 = x + –– + –– + + –––––––– + , – < x < (2r + 1) Binomial expansions When n is a positive integer n n n (a + b)n = an + an –1 b + an–2 b2 + + r an–r br + bn , n ∈ ގ where n n n n+1 n! n r = Cr = –––––––– r + r+1 = r+1 r!(n – r)! () () () () () ( ) ( ) Logarithms and exponentials exln a = ax logbx loga x = ––––– logba Numerical solution of equations f(xn) Newton-Raphson iterative formula for solving f(x) = 0, xn+1 = xn – –––– f'(xn) Complex Numbers {r(cos θ + j sin θ)}n = r n(cos nθ + j sin nθ) ejθ = cos θ + j sin θ 2πk The roots of zn = are given by z = exp( –––– j) for k = 0, 1, 2, , n – n Finite series n n 1 ∑ r2 = – n(n + 1)(2n + 1) ∑ r3 = – n2(n + 1)2 r=1 r=1 ALGEBRA ln(1 + x) Hyperbolic functions cosh2x – sinh2x = 1, sinh2x = 2sinhx coshx, cosh2x = cosh2x + sinh2x arcosh x = ln(x + x + ), 1+x artanh x = – ln ––––– , |x| < 1–x arsinh x = ln(x + ( x – ), x у ) Matrices Anticlockwise rotation through angle θ, centre O: Reflection in the line y = x tan θ : ( cosθθ sin ( cos22θθ sin –sin θ cos θ ) sin 2θ –cos 2θ ) Cosine rule A b2 + c2 – a2 cos A = –––––––––– (etc.) 2bc c a2 = b2 + c2 –2bc cos A (etc.) B Trigonometry Perpendicular distance of a point from a line and a plane b a Line: (x1,y1) from ax + by + c = : a2 + b2 n1α + n2β + n3γ + d Plane: (α,β,γ) from n1x + n2y + n3z + d = : –––––––––––––––––– √(n12 + n22 + n32) C sin (θ ± φ) = sin θ cos φ ± cos θ sin φ cos (θ ± φ) = cos θ cos φ ϯ sin θ sin φ Vector product i a1 b1 a2b3 – a3b2 ^ = j a b = a b –a b a × b = |a| |b| sinθ n 2 1 k a3 b3 a1b2 – a2b1 tan θ ± tan φ tan (θ ± φ) = –––––––––––– , [(θ ± φ) ≠ (k + W)π] ϯ tan θ tan φ | a × (b × c) = (c a) b – (a b) c – – sin θ – sin φ = cos (θ + φ) sin (θ – φ) 2 Conics Ellipse Hyperbola Rectangular hyperbola y2 x2 –– + –– = b2 a y2 = 4ax y2 x2 –– – –– = b2 a x y = c2 Parametric form (acosθ, bsinθ) (at2, 2at) (asecθ, btanθ) c (ct, – –) t Parabola Standard form – (θ – φ) – (θ – φ) Vectors and 3-D coordinate geometry (The position vectors of points A, B, C are a, b, c.) The position vector of the point dividing AB in the ratio λ:µ µa + λb is ––––––– (λ + µ) Line: ) a1 b1 c1 a (b × c) = a2 b2 c2 = b (c × a) = c (a × b) a3 b3 c3 (1 + t ) – – sin θ + sin φ = sin (θ + φ) cos (θ – φ) 2 – cos θ + cos φ = cos (θ + φ) cos – cos θ – cos φ = –2 sin (θ + φ) sin | |( | Cartesian equation of line through A in direction u is x – a1 y – a2 z – a3 –––––– = –––––– = –––––– = t u1 u2 u3 ( ) e1 = a2 (e2 – 1) e = √2 l – = + e cos θ r TRIGONOMETRY, VECTORS AND GEOMETRY (1 – t2) 2t – For t = tan θ : sin θ = –––––– , cos θ = –––––– 2 (1 + t ) ax1 + by1 + c Differentiation f(x) tan kx sec x cot x cosec x arcsin x f'(x) ksec2 kx sec x tan x –cosec2 x –cosec x cot x ––––––– √(1 – x2) –1 ––––––– √(1 – x2) ––––– + x2 cosh x sinh x sech2 x ––––––– √(1 + x2) arccos x arctan x sinh x cosh x x arsinh x artanh x du dv v ––– – u ––– dx dx u dy Quotient rule y = – , ––– = v v dx Trapezium rule b–a – ∫a ydx ≈ h{(y0 + yn) + 2(y1 + y2 + + yn–1)}, where h = ––––– n b Integration by parts Area of a sector Arc length dv du ∫ u ––– dx = uv – ∫ v ––– dx dx dx – A = ∫ r dθ (polar coordinates) – y ˙ A = ∫ (x˙ – yx) dt (parametric form) ˙ ˙ s = ∫ √ (x + y ) dt (parametric form) dy s = ∫ √ (1 + [ –––] ) dx (cartesian coordinates) dx dr s = ∫ √ (r + [ –––] ) dθ (polar coordinates) dθ 2 2 2 sec x –––––– – a2 x ––––––– √(a2 – x2) –––––– a2 + x2 –––––– a2 – x2 sinh x cosh x x ––––––– √(a2 + x2) ––––––– √(x2 – a2) Surface area of revolution ∫f(x) dx (+ a constant) (l/k) tan kx ln |sec x| ln |sin x| x –ln |cosec x + cot x| = ln |tan – | x π ln |sec x + tan x| = ln tan – + – x– –– ln ––– a x +–– a 2a | ( | | x arcsin ( – ) , |x| < a a arctan – x – ( a) a x a +–– x –– ln | ––– x | = artanh ( – ) , |x| < a – a a a– 2a cosh x sinh x ln cosh x x arsinh – or ln (x + x + a ), a () x arcosh ( – ) or ln (x + x a S = 2π∫y ds = 2π∫y√(x ˙ S = 2π∫x ds = 2π∫x√(x ˙ – a ), x > a , a > + y 2) dt ˙ + y 2) dt ˙ x y Curvature )| d2y ––– dψ x x y ă dx2 = = –––––––– = ––––––––––––– + y2)3/2 ds dy 3/2 (˙ ˙ x + –– dx ( [ ]) Radius of curvature ρ = –– , κ ^ Centre of curvature c = r + ρ n L'Hôpital’s rule If f(a) = g(a) = and g'(a) ≠ then f(x) f'(a) Lim –––– = –––– x ➝a g(x) g'(a) Multi-variable calculus ∂g/∂x ∂w ∂w ∂w For w = g(x, y, z), δw = ––– δx + ––– δy + ––– δz grad g = ∂g/∂y ∂x ∂y ∂z ∂g/∂z ( ) CALCULUS ––––––– √(x2 – 1) ––––––– (1 – x2) arcosh x Integration f(x) sec2 kx tan x cot x cosec x Centre of mass (uniform bodies) Triangular lamina: Solid hemisphere of radius r: Hemispherical shell of radius r: Solid cone or pyramid of height h: Moments of inertia (uniform bodies, mass M) along median from vertex – 3 r from centre – r from centre – h above the base on the – line from centre of base to vertex Sector of circle, radius r, angle 2θ: 2r sin θ ––––––– from centre 3θ r sin θ Arc of circle, radius r, angle 2θ at centre: ––––––– from centre θ h above the base on the – Conical shell, height h: line from the centre of Thin rod, length 2l, about perpendicular axis through centre: Rectangular lamina about axis in plane bisecting edges of length 2l: Thin rod, length 2l, about perpendicular axis through end: Rectangular lamina about edge perpendicular to edges of length 2l: Rectangular lamina, sides 2a and 2b, about perpendicular – M(a2 + b2) axis through centre: Hoop or cylindrical shell of radius r about perpendicular axis through centre: Hoop of radius r about a diameter: Disc or solid cylinder of radius r about axis: base to the vertex Solid sphere of radius r about a diameter: Motion in polar coordinates Spherical shell of radius r about a diameter: ˙ Transverse velocity: v = rθ v2 ˙ Radial acceleration: r = r ă Transverse acceleration: v = rθ General motion Radial velocity: Transverse velocity: Radial acceleration: Transverse acceleration: r ˙ ˙ rθ ˙ r r ă d ă + 2r = –– (r2θ ) ˙ – ˙˙ rθ r dt Moments as vectors The moment about O of F acting at r is r × F Mr2 – Mr2 – Mr2 – Mr2 – Mr2 – Mr2 Parallel axes theorem: IA = IG + M(AG)2 Perpendicular axes theorem: Iz = Ix + Iy (for a lamina in the (x, y) plane) MECHANICS Disc of radius r about a diameter: Motion in a circle – Ml2 – Ml2 – Ml2 – Ml2 Probability Product-moment correlation: Pearson’s coefficient ∑ xi yi –xy Sxy Σ( xi – x )( yi – y ) n r= = = 2 Sxx Syy ∑ xi ∑ yi Σ( xi – x ) Σ( yi – y ) − x2 − y2 n n P(A∪B) = P(A) + P(B) – P(A∩B) P(A∩B) = P(A) P(B|A) P(B|A)P(A) P(A|B) = –––––––––––––––––––––– P(B|A)P(A) + P(B|A')P(A') [ P(Aj)P(B|Aj) Bayes’ Theorem: P(A j |B) = –––––––––––– ∑P(Ai)P(B|Ai) Rank correlation: Spearman’s coefficient Populations 6∑di2 rs = – –––––––– n(n2 – 1) Discrete distributions X is a random variable taking values xi in a discrete distribution with P(X = xi) = pi Expectation: µ = E(X) = ∑xi pi Variance: σ2 = Var(X) = ∑(xi – µ)2 pi = ∑xi2pi – µ2 For a function g(X): E[g(X)] = ∑g(xi)pi Regression X is a continuous variable with probability density function (p.d.f.) f(x) Expectation: µ = E(X) = ∫ x f(x)dx Variance: σ2 = Var (X) = ∫(x – µ)2 f(x)dx = ∫x2 f(x)dx – µ2 For a function g(X): E[g(X)] = ∫g(x)f(x)dx Cumulative x distribution function F(x) = P(X р x) = ∫–∞f(t)dt Sxx = ∑(xi – x )2 = ∑xi2 – n , Syy = ∑(yi – y )2 = ∑yi2 – (∑xi)(∑yi) Sxy = ∑(xi – x )(yi – y ) = ∑xi yi – ––––––––– n Covariance Sxy –––– = ∑( xi – x )( yi – y ) = ∑ xi yi – x y n n n S2 for population variance σ where S2 = –––– ∑(xi – x )2fi n–1 Probability generating functions For a discrete distribution For a sample of n pairs of observations (xi, yi) (∑xi)2 ––––– Least squares regression line of y on x: y – y = b(x – x ) ∑ xi yi –xy Sxy ∑(xi – x) (yi – y ) n b = ––– = ––––––––––––––– = Sxx ∑ xi ∑(xi – x )2 – x2 n Estimates Unbiased estimates from a single sample σ2 X for population mean µ; Var X = –– n (∑yi)2 ––––– n , G(t) = E(tX) E(X) = G'(1); Var(X) = G"(1) + µ – µ2 GX + Y (t) = GX (t) GY (t) for independent X, Y Moment generating functions: MX(θ) = E(eθX) E(X) = M'(0) = µ; E(Xn) = M(n)(0) Var(X) = M"(0) – {M'(0)}2 MX + Y (θ) = MX (θ) MY (θ) for independent X, Y STATISTICS Continuous distributions Correlation and regression ] Markov Chains pn + = pnP Long run proportion p = pP Bivariate distributions Covariance Cov(X, Y) = E[(X – µX)(Y – µY)] = E(XY) – µXµY Cov(X, Y) Product-moment correlation coefficient ρ = –––––––– σX σY Sum and difference Var(aX ± bY) = a2Var(X) + b2Var(Y) ± 2ab Cov (X,Y) If X, Y are independent: Var(aX ± bY) = a2Var(X) + b2Var(Y) E(XY) = E(X) E(Y) Coding X = aX' + b ⇒ Cov(X, Y) = ac Cov(X', Y') Y = cY' + d } One-factor model: xij = µ + αi + εij, where εij ~ N(0,σ2) Ti2 –– SSB = ∑ni ( x i – x )2 = ∑ ––– – T ni n i i –– SST = ∑ ∑ (xij – x )2 = ∑ ∑ xij2 – T n i j i j Yi α + βxi + εi RSS ∑(yi – a – bxi)2 α + βf(xi) + εi α + βxi + γzi + εi ∑(yi – a – εi ~ N(0, σ2) No of parameters, p bf(xi))2 ∑(yi – a – bxi – czi)2 a, b, c are estimates for α, β, γ For the model Yi = α + βxi + εi, Sxy σ2 b = ––– , b ~ N β, ––– , Sxx Sxx ( b−β ~ tn –2 ˆ σ / Sxx ) σ 2∑xi2 ––––––– a = y – b x , a ~ N α, n S xx ( RSS ^ –––– σ2 = n – p ) (x0 – x )2 a + bx0 ~ N(α + βx0, σ2 + ––––––– – n Sxx (Sxy) RSS = Syy – ––––– = Syy (1 – r2) Sxx { } Randomised response technique y – – (1 – θ) n ^ E(p) = –––––––––– (2θ – 1) [(2θ – 1) p + (1 – θ)][θ – (2θ – 1)p] ^ Var(p) = –––––––––––––––––––––––––––––– n(2θ – 1) Factorial design Interaction between 1st and 2nd of treatments (–) { (Abc – abc) + (AbC – abC) (ABc – aBc) + (ABC – aBC) ––––––––––––––––––––– – –––––––––––––––––––––– 2 } Exponential smoothing ^ yn+1 = α yn + α(1 – α)yn–1 + α(1 – α)2 yn–2 + + α(1 – α)n–1 y1 + (1 – α)ny0 ^ = y + α(y – y ) ^ ^ yn+1 n n n ^ ^ yn+1 = α yn + (1 – α) yn STATISTICS Analysis of variance Regression Description Pearson’s product moment correlation test r= Distribution ∑ xi yi –xy n ∑ xi ∑ yi – x2 – y2 n n t-test for the difference in the means of samples 6∑di2 rs = – ––––––– n(n2 – 1) Normal test for a mean x–µ σ/ n N(0, 1) t-test for a mean x–µ s/ n tn – χ2 test t-test for paired sample Normal test for the difference in the means of samples with different variances Description ∑ (f o – fe ) ( x1 – x2 ) – µ s/ n ( x – y ) – ( µ1 – µ2 ) 1 + s n1 n2 See tables Wilcoxon Rank-sum (or Mann-Whitney) 2-Sample test Samples size m, n: m р n Wilcoxon W = sum of ranks of sample size m Mann-Whitney – T = W – m(m + 1) See tables p –θ Normal test on binomial proportion N(0, 1) + n2 – (n1 – 1)s12 + (n2 – 1)s22 where s2 = ––––––––––––––––––––––– n1 + n2 – θ (1 – θ ) n χ2 test for variance (n – 1)s σ2 ( x – y ) – ( µ1 – µ2 ) σ 12 σ 2 + n1 n2 tn A statistic T is calculated from the ranked data χ 2v t with (n – 1) degrees of freedom Distribution Wilcoxon single sample test fe Test statistic F-test on ratio of two variances s12 /σ12 ––––––– s22 /σ22 , s12 > s22 N(0, 1) χ2n – Fn –1, n2 –1 STATISTICS: HYPOTHESIS TESTS Spearman rank correlation test Test statistic Name Mean Function Variance p.g.f G(t) (discrete) m.g.f M(θ) (continuous) P(X = r) = nCr qn–rpr , for r = 0, 1, ,n , < p < 1, q = – p np npq G(t) = (q + pt)n Poisson (λ) Discrete λr P(X = r) = e–λ ––– , r! for r = 0, 1, , λ > λ λ G(t) = eλ(t – 1) µ σ2 M(θ) = exp(µθ + Wσ 2θ 2) x–µ exp – W ––––– σ ( ( Normal N(µ, σ2) Continuous f(x) = Uniform (Rectangular) on [a, b] Continuous f(x) = ––––– b–a Exponential Continuous f(x) = λe–λx Geometric Discrete P(X = r) = q r – 1p , σ 2π ) ), –∞ < x < ∞ Negative binomial Discrete , aрxрb , 0